AUTOMATING THE URBANISM SERVICE WITHIN A TYPICAL MOROCCAN COMMUNE

EGR 4402: Capstone Design

18 April 2017

Imane Kaddouri

Supervised by Dr. Driss Kettani
URBANISM SERVICE SYSTEM

Capstone Final Report

Capstone Student: Imane Kaddouri

Approved by the Supervisor

SUPERVISOR: Dr. Driss Kettani

May 3rd 2017
ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to Dr. Driss Kettani, my supervisor, for giving me the opportunity and for helping me carrying out this capstone project. I would also like to thank him for the knowledge I acquired from him through several courses as well as my internship that he supervised, and which were of great help to me throughout this capstone.

I would also like to express my thanks to the general director Mrs. Houda Chakiri and to Mr. Zouheir Chakiri of Enhanced Technologies for giving me the opportunity to work on a real life project as my capstone, and for their availability and their help.
CONTENTS

1. **Introduction** 7
2. **Methodology** 8
3. **STEEPLE Analysis** 9
4. **The Software Engineering Process** 10
5. **Requirements Specification** 12
 - 5.1 Description of the Meetings 12
 - 5.2 Draft N°1 14
 - 5.3 Draft N°2 15
 - 5.4 Stable Version 18
 - 5.4.1 Functional Requirements 18
 - 5.4.2 Non-Functional Requirements 24
6. **Workflow Activity Diagram** 26
7. **Users Vs System Activity Diagrams** 29
 - 7.1 Citizen Vs System 29
 - 7.2 Employee Vs System 30
 - 7.3 Commission Vs System 31
 - 7.4 Taxation Vs System 32
 - 7.5 Architect Vs System 33
 - 7.6 President Vs System 34
 - 7.7 Technician Vs System 35
 - 7.8 Admin Vs System 36
8. **Data Modelling** 37
 - 8.1 Conceptual Data Model 37
 - 8.1.1 Procedure 37
 - 8.1.2 Results 38
 - 8.2 Physical Data Model 44
 - 8.2.1 Procedure 44
 - 8.2.2 Enhanced Entity Relation Diagram 45
9. **Design** 57
 - 9.1 System Architecture 57
 - 9.1.1 Description 57
 - 9.1.2 Advantages 58
 - 9.2 Technology Enablers 58
 - 9.3 Enhanced System Architecture 61
10. **Implementation** 62
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Main Challenges and Lessons Learned</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>Conclusion</td>
<td>66</td>
</tr>
<tr>
<td>13</td>
<td>Appendix</td>
<td>67</td>
</tr>
</tbody>
</table>
ABSTRACT

The Urbanism Service System is a JEE based web application using a MySQL database, that automates the different steps of the issuance of a construction permit, as well as manages the different types of users’ interfaces, departments and the different urbanism documents traceability. Its main purpose is to facilitate the processes within an urbanism service in Morocco, while increasing their efficiency, effectiveness, visibility and transparency. Moreover, it will increase the accessibility of citizens to a public service, which is low in most of Morocco.

This report first includes an introduction to the general context of the project, which is the urbanism service in Morocco. It clearly states the problem, which is that most of these services are still paper based, and the chosen option to solve it, which is this web application. Second, it contains the methodology followed in this project, and which is an association of primary research through interviews, and secondary research through online documentation. Third, it includes the STEEPLE analysis, which shows the societal, technical, environmental, ethical, political, legal and economic impacts of this project. Fourth, it contains both the functional and non-functional requirements, the modelling through activity diagrams using UML and their descriptions, the data modelling step which includes the conceptual and physical data models along with their descriptions, the design step which features the system architecture and technology enables, the implementation step and finally the main challenges and lessons learned.
1 INTRODUCTION

The urbanism service’s mission is to shape the territorial project of the city and to participate in the organization of the regional territory, to ensure a better harmony. It takes care of the organization of building, the activities that have an impact on the territory and the development of public spaces, and the distribution of public utilities.

Moreover, it takes care of the preservation of the built heritage, the implementation and monitoring of the various tools for managing the territory (neighborhood plans, communal master plan, general allocation plan, etc.) and the purchase and / or sale of strategic land contributing to the harmonious development of the city.

Furthermore, it takes care of checking requests for building permits and issuing them, the procedures for public inquiry and the inspection of construction sites. In addition to that, it provides with information about the various land-use planning procedures, the building permits, colors, the architectural census etc.

In Morocco, most - if not all - of the urbanism service processes are still paper based. Paper based work can be both tedious and time consuming for both the citizens and the employees. It also is more vulnerable to mistakes, losses and delays. It lacks efficiency and effectiveness, as well transparency and visibility. It is therefore urgent to solve this problematic situation.

The solution proposed is to build a JEE based web application that would automate the different processes in an urbanism service. In addition to that, it would manage the different types of users and trace the advancement of a project, as well as its associated documents. It would also give the possibility to the different users, depending on their type, to have real time access to information and services concerning the projects with which they might be involved.
2 METHODOLOGY

This project requires a deep understanding of what the urbanism service is about, what it takes cares of, the processes offered, and how they are conducted. It also requires having a clear grasp of the different requirements in order to produce a concise, precise and complete list of specifications the web application will implement.

The methodology followed in this project is an association of primary and secondary research. The secondary research first consisted of online documentation about urbanism in general, as well as electronic documents management. Mainly, it was about reading online material that explained what urbanism is generically, and the services it is responsible for. In addition to that, it consisted of analyzing the existing non-used web application system in Sefrou’s urbanism service.

The primary research is the most used in this project. It consists of conducting interviews with employees in Sefrou city, who are knowledgeable about urbanism since they have experienced it first-hand. The early stage interviews were a set of well-directed questions which purpose is to get the requirements and understand the different steps a project goes through before the issuance of a construction permit. The second stage interviews’ purpose were to validate the initial list of specifications, and to gather the input-output documents in the urbanism service from which the data is to be extracted.
3 STEEPLE ANALYSIS

STEEPLE stands for societal, technical, environmental, ethical, political, legal and economic factors that a project impacts. Following is the STEEPLE analysis of this capstone project:

- **Societal**: This project will facilitate the access to urbanism services to citizens, as well as ease and reduce overheads on the employees and any other parts involved. This will contribute greatly to society since the urbanism plays a huge role in it, and solving some of the problems in that area will improve public services.

- **Technical**: This project will use existing technologies and will not need nor involve the design and development of any new technical components.

- **Environmental**: This project will not impact the environment in a negative way, as it will not cause any pollution or damage to the environment. However, it will impact the environment in a positive way, since it will reduce the paper work done within the urbanism service.

- **Ethical**: This project will increase the visibility and transparency of the processes within the urbanism service. As a result, the interactions between the different parties in this service as well as the work will be more ethical.

- **Political**: This project will not have any impact on the political aspect.

- **Legal**: This project will not impact the Moroccan law in general. However, it will contribute to reinforcing the respect of the urbanism official decree.

- **Economic**: This project will save time to both the employees and the citizens. Time is money, which implies that this project will contribute in reducing some of the expenses.
THE SOFTWARE ENGINEERING PROCESS

The software engineering model followed in this capstone project is the Incremental Model. The motivation behind choosing it for this project is that since it is a sub-type of the Prototyping Model, it allows the flexibility and versatility needed. In addition to that, since it is also a compromise between the Waterfall Model and the Prototyping Model, it allows a formal and solid specification of the requirements, which is the most crucial step that decides whether a project has a higher chance of being successful or disastrous. This model rests on first defining a definitive list of specifications, and this step is rigid in the sense that it is not possible to go back to it once it is finished. It progresses slowly but surely, and ends with a verification and validation step. The flexibility of this model is highlighted in the design and implementation steps, since it is not required to complete every aspect of the design in order to move to the implementation.

The first step in the software engineering process is the requirements engineering step. This step is about to “What” of the system, including both the functional and non-functional requirements. In the context of this project, it consisted first of gathering the requirements through several meetings with the employees in Sefrou. The purpose of the meetings was to ask questions to the employees in order to globally then specifically understand the business rules. After understanding the business rules, questions about what they wanted from the software were asked in order to get the main building blocks of the system. Their answers went through elicitation in order to get rid of the language ambiguities as well as the contradictions gathered during the meetings. Indeed, the first time they would give an information and the second time contradict themselves. The purpose of elicitation is to make sure the requirements are Precise, Consistent and Complete. A very useful way to keep track of the preciseness, consistency and completeness of the different components of the system is the Magic Matrix. The requirements were then decomposed into smaller units in order to be understood properly and to be recomposed in a more suitable way. The basic elements of the system and which are the Users, Processes and Data were identified then modeled using both UML (Unified Modelling Language) and MERISE methodology.
The second step in the software engineering process is the design step. This step is about the “How” of the system. It describes the structure of the system and how it is going to be developed/implemented. In the context of this project the technology enablers, which are the tools used to build the system (programming language, data base management system, framework, integrated development environment, interface development tools etc.) were defined according to the constraints imposed and to my own choice. The general system architecture was also defined as well as the specific system architecture that fits the technology enablers and needs of the system. The functions interface, algorithms, functions interactions and data flow diagrams were defined in parallel with the development/implementation step since in this project the model followed is the incremental model.

The third step in the software engineering process is the development/implementation step. This step is concerned with programming the ready for automation actions using the technology enablers defined previously, as well as programming the system so that it respects the system architecture. This step was conducted in parallel with the previous one because of the nature of the software engineering model followed.
5 REQUIREMENTS SPECIFICATION

5.1 DESCRIPTION OF THE MEETINGS

The first meeting’s purpose was to familiarize myself with the urbanism service, as I knew nothing about it. Following are the main questions that were asked and the answers that were given:

- **What are the main functions (purposes) of the urbanism service?** The main functions are to deliver different permits such as a construction permit to citizens that submit a certain type of project in the “Guichet Unique”.

- **What are the different types of projects?** The different types of projects are big projects such as subdivisions, groupings of habitations and equipment, meaning anything that is related to a public facility such as an administration, a school, a hospital etc., and small projects such as reconstructing something or adding a new component to a house.

- **What is the “Guichet Unique”?** The “Guichet Unique” contains everything that is related to construction. Its purpose is to organize and simplify the different procedures for the citizen, according to the 2016 decree, so that the citizen submits his folder that is treated in the “Guichet Unique”, because it goes through a set of steps.

- **What are those steps?** For example for a big project such as a subdivision, an architectural folder is submitted. The architecture is given to the commission to be judged. After it is accepted, it should become a certified copy and it is allowed to construct. Then comes the step where the plans for the networks such as routes, drinkable water, sanitation, public lights and phone line are asked. The plans are then studied. If they are accepted, the permit is given for construction.

- **What are the other types of permits?** For small projects such as an individual house, we have what we call minor permits, for example to repair something or to add a balcony, as well as living permits. No plans are needed for repair.
What types can the demander be? He can be either an individual, a contractor or an organization.

What are, in bullet points, the steps in order to get a construction permit? First, the information about the demander must be entered, including his name, his national ID card number, his register, his address etc. Then the information about the project must be entered including the prefecture or province, the type which can be an R+4 building, a public facility, a housing division, a housing grouping, a private facility and an industrial facility, and the architects including the building and topographic ones. Then the associated documents must be scanned and validated before moving to the next step. The commission members give their individual inputs on the project to decide whether to validate or to reject it. To the people who belong in the infractions list, no permits shall be given. Also, the permits can need renewal, for example when the tax rate changes. There are two types of document, obligatory and complementary. If an obligatory document is missing, the project remains at step 1 before moving to the commission. A meeting should be scheduled and depending on the type of the project certain services take part in the commission. Every commission member’s input should be private. The other commission members cannot see it. It should be printed and signed. The decree talks about this. If favorable, it moves to taxation which is the calculation of surfaces and balconies. After taxation, the permit is generation as well as the public occupation document, and the citizen should pay and bring a receipt. A recommended letter is sent to the architects and notify that the project will start, and the President signs the permit. The project then moves to its control zone and the technician is informed. If the project is rejected, a justifying note should be given to the citizen. If it is favorable, the citizen should be given the documents to be sent to the architects, and that must be signed then scanned again. The President should sign all the documents.

During this meeting, the employee pointed out that the welcome page of the website should have different buttons for different types of users to log in the system in order to check the progress of the project, and that the system should have an administrator interface, where it is
possible to monitor the different aspects of the system such as adding, deleting and modifying users, services, commissions, projects’ statuses and steps.

The second meeting’s purpose was to validate the first list of requirements as well as to ask further questions such as: Can the President validate a project even if the commission’s input was negative and vice versa?, and the answer was yes, and to get the documents in Arabic from which the data is to be extracted.

5.2. DRAFT N°1

After the first meeting, the following main building blocks were understood:
- Manage Folder
- Manage Project
- Manage Permit
- Manage User
- Manage Scheduling
- Manage Commission
- Manage Taxation
- Manage Document
- Manage Meeting
- Manage Receipt
- Manage Authentication
- Manage Step
- Manage Status
- Manage Service
- Manage Traceability
- Manage Citizen
- Manage Employee
- Manage Technician
- Manage Architect
- Manage President
- Manage Commission Member

5.3. DRAFT N°2

- FOLDER MANAGEMENT BLOC
 The employee at the urbanism service should be able to add a new folder with its number as well as the obligatory and complementary documents to it. It should be able to view its content and download it. It should be able to modify its content when new documents are received or when a false or obsolete document was mistakenly scanned.

- PROJECT MANAGEMENT BLOC
 The employee should be able to add a new project, by adding the information about the project as well as the demander and folder. The obligatory documents should be entered as well as the complementary ones. A project should be scheduled for a meeting in order to be studied. It also should be modified depending on the step it reaches. The system should allow viewing all the projects as well as their full description.

- PERMIT MANAGEMENT BLOC
 It should be possible to add a new permit, as well modify its state in case it expires for example. The system should allow viewing all the permits as well as a full description of them.

- USER MANAGEMENT BLOC
 The administrator should be able to add, delete and modify users of the system, as well as view a full description of a specific user and a full view of all users.

- SCHEDULING MANAGEMENT BLOC
 The employee should be able to schedule a project to be studied by a specific commission. The system should allow viewing all the available schedules as well as their description.
- **COMMISSION MANAGEMENT BLOC**
 The system should allow adding, deleting, modifying a commission as well as viewing a full description of its members.

- **TAXATION MANAGEMENT BLOC**
 The system should allow calculating taxes related to a specific project, as well viewing all the calculated taxes and a tax for a specific project’s description.

- **DOCUMENT MANAGEMENT BLOC**
 The system should allow adding, deleting and modifying a document. It should also allow viewing a specific document’s content as well as a description of all the documents whiting a folder.

- **MEETING MANAGEMENT BLOC**
 The system should allow adding individual inputs by different commission members involved in a meeting and generating a common input that is either favorable or unfavorable. It should allow viewing all decisions made in different meetings with a full description as well as a full description for a specific decision.

- **RECEIPT MANAGEMENT BLOC**
 The system should allow adding and printing different types of receipts, as well viewing all receipts and their full description.

- **AUTHENTICATION MANAGEMENT BLOC**
 The system should allow logging in and logging out using two credentials, depending on the user type.

- **STEP MANAGEMENT BLOC**
 The administrator should be able to add, modify and delete a step. The system should allow viewing all the available steps with their descriptions as well as a full description of a specific step.
- **STATUS MANAGEMENT BLOC**
The administrator should be able to add, modify and delete a status. The system should allow viewing all the available statuses with their descriptions as well as a full description of a specific status.

- **SERVICE MANAGEMENT BLOC**
The system should allow adding, deleting and modifying a service. It should allow adding an employee to a service as well as assigning a head to it. It should allow viewing all the available services with their full description and the full description of a specific service with its employees.

- **TRACEABILITY MANAGEMENT BLOC**
The system should keep track of all the operations performed. It should automatically add an entry specifying what was done by who and when. It should allow viewing all the traces and their descriptions. It should also allow searching them by keyword.

- **CITIZEN MANAGEMENT BLOC**
The system should allow users of type citizen to view their profiles, their projects, and their folders description and to view their documents as well search with a keyword.

- **EMPLOYEE MANAGEMENT BLOC**
The system should allow users of type employee to view their profiles, the ongoing projects and their folders description, to view documents as well as to search with a keyword, and move a project to its next step.

- **TECHNICIAN MANAGEMENT BLOC**
The system should allow users of type technician to view their profiles, the projects in their control zones, as well their folders description and to view their documents as well search with a keyword.

- **ARCHITECT MANAGEMENT BLOC**
The system should allow users of type architect to view their profiles, their projects, and their folders description and to view their documents as well search with a keyword.

- **PRESIDENT MANAGEMENT BLOC**
 The system should allow users of type president to view their profiles, all projects, and all folders description and to view all documents as well search with a keyword. It should allow the president to approve or reject projects that are in that step.

- **COMMISSION MEMBER MANAGEMENT BLOC**
 The system should allow users of type commission member to view their profiles, the projects, and the folders description assigned to them for study and to view their documents. It should allow them to enter an individual input on a specific project.

5.4. **STABLE VERSION**

5.4.1. **FUNCTIONAL REQUIREMENTS**

- **FUNCTION MANAGE FOLDER**
 - Sub Function Add new folder
 - Sub Function Modify folder
 - Sub Function View all folders description
 - Sub Function View specific folders description and content
 - Sub Function Add a document to a folder
 - Sub Function Search a document

- **FUNCTION MANAGE PROJECT**
 - Sub Function Add new project
 - Sub Function Modify project’s step
 - Sub Function Modify project’s status.
 - Sub Function View All projects description
- **FUNCTION MANAGE PERMIT**
 - Sub Function Add new permit
 - Sub Function Modify permit’s state
 - Sub Function View all permits description
 - Sub Function View a specific permit’s description
 - Sub Function Search a permit

- **FUNCTION MANAGE USER**
 - Sub Function Add new user
 - Sub Function Modify user
 - Sub Function Delete user
 - Sub Function View all users description
 - Sub Function View a specific user’s description
 - Sub Function Search a user

- **FUNCTION MANAGE SCHEDULING**
 - Sub Function Add new schedule
 - Sub Function Modify schedule
 - Sub Function Delete schedule
 - Sub Function View all schedules description
 - Sub Function View a specific schedule’s description
 - Sub Function Search a schedule

- **FUNCTION MANAGE COMMISSION**
 - Sub Function Add new commission
 - Sub Function Modify commission
- **FUNCTION MANAGE TAXATION**
 - Sub Function Calculate tax for a specific project
 - Sub Function View all taxes description
 - Sub Function View a specific project’s tax

- **FUNCTION MANAGE DOCUMENT**
 - Sub Function Add new Document
 - Sub Function Delete Document
 - Sub Function View all documents description
 - Sub Function View a specific document’s description
 - Sub Function Download a document’s content

- **FUNCTION MANAGE MEETING**
 - Sub Function Add new meeting decision
 - Sub Function Modify meeting decision
 - Sub Function View all decisions
 - Sub Function View a specific project’s decision

- **FUNCTION MANAGE RECEIPT**
 - Sub Function Add new receipt
 - Sub Function View all receipts description
 - Sub Function View a specific receipt’s description
 - Sub Function Search a receipt

- **FUNCTION MANAGE AUTHENTICATION**
 - Sub Function Log in
- **FUNCTION MANAGE STEP**
 - Sub Function Add new step
 - Sub Function Modify step
 - Sub Function View all steps description
 - Sub Function View a specific step’s description

- **FUNCTION MANAGE STATUS**
 - Sub Function Add new status
 - Sub Function Modify status
 - Sub Function View all statuses description
 - Sub Function View a specific status’s description

- **FUNCTION MANAGE SERVICE**
 - Sub Function Add new service
 - Sub Function Modify service
 - Sub Function Delete service
 - Sub Function Add employee to service
 - Sub Function Assign a head to service
 - Sub Function Delete employee from service
 - Sub Function View all services description
 - Sub Function View a specific service’s employees

- **FUNCTION MANAGE TRACEABILITY**
 - Sub Function Automatically add new history
 - Sub Function View all history
 - Sub Function Search for history

- **FUNCTION MANAGE CITIZEN**
 - Sub Function Authenticate
- Sub Function View profile
- Sub Function View all projects
- Sub Function View a specific project
- Sub Function View all folders
- Sub Function View a specific folder’s content
- Sub Function View all documents
- Sub Function Download a specific document’s content
- Sub Function Search a project
- Sub Function Search a folder
- Sub Function Log out

- FUNCTION MANAGE EMPLOYEE
 - Sub Function Authenticate
 - Sub Function Add new project
 - Sub-Sub Function Add project’s information
 - Sub-Sub Function Add citizen’s information
 - Sub-Sub Function Add folder’s documents
 - Sub Function Schedule a project
 - Sub Function View all projects description
 - Sub Function View a specific project’s description
 - Sub Function View all folders description
 - Sub Function View a specific folder’s description and content
 - Sub Function Download a document
 - Sub Function Download a receipt
 - Sub Function Notify users
 - Sub Function View all commissions
 - Sub Function View a specific commission’s description
 - Sub Function View all taxes
 - Sub Function View a specific project’s tax
 - Sub Function View all permits
 - Sub Function View a specific permit’s description
- **FUNCTION MANAGE TECHNICIAN**
 - Sub Function Authenticate
 - Sub Function View profile
 - Sub Function View all projects
 - Sub Function View a specific project
 - Sub Function View all folders
 - Sub Function View a specific folder’s content
 - Sub Function View all documents
 - Sub Function Download a specific document’s content
 - Sub Function Search a project
 - Sub Function Search a folder
 - Sub Function Log out

- **FUNCTION MANAGE ARCHITECT**
 - Sub Function Authenticate
 - Sub Function View profile
 - Sub Function View all projects
 - Sub Function View a specific project
 - Sub Function View all folders
 - Sub Function View a specific folder’s content
 - Sub Function View all documents
 - Sub Function Download a specific document’s content
 - Sub Function Search a project
 - Sub Function Search a folder
 - Sub Function Log out

- **FUNCTION MANAGE PRESIDENT**
 - Sub Function Authenticate
 - Sub Function View all projects description
- Sub Function View a specific project’s description
- Sub Function View all folders description
- Sub Function View a specific folder’s description and content
- Sub Function Download a document
- Sub Function Download a receipt
- Sub Function View all commissions
- Sub Function View a specific commission’s description
- Sub Function View all taxes
- Sub Function View a specific project’s tax
- Sub Function View all permits
- Sub Function View a specific permit’s description
- Sub Function Validate a specific project
- Sub Function Reject a specific project with a justifying note
- Sub Function Log out

- FUNCTION MANAGE COMMISSION MEMBER

 - Sub Function Authenticate
 - Sub Function View all scheduled meetings
 - Sub Function View a specific scheduled meeting’s description
 - Sub Function View all projects description
 - Sub Function View a specific project’s description
 - Sub Function View all folders description
 - Sub Function View a specific folder’s description and content
 - Sub Function Download a document
 - Sub Function Add individual input
 - Sub Function Log out

5.4.2. NON-FUNCTIONAL REQUIREMENTS

- The system should be in both Arabic and French.
- The interface must be simple and easy to use.
- The system should be web based and accessible through a browser.
6 WORKFLOW ACTIVITY DIAGRAM

Figure 1 Workflow Activity Diagram
The figure above represents the activity diagram of the workflow within the urbanism service. It depicts the different actors of the system, and which are: citizen, employee, commission member, taxation, architect, president and technician. It also shows a general view of how they all interact between each other and the system.

Following are the steps from the start of the construction request until the issuance of the construction permit:
- The citizen deposits folder in the urbanism service.
- The employee chooses a project type.
- The employee enters information on folder.
- The system creates a new folder with its attributes.
- The employee enters the citizen’s and the project’s information and validates.
- The system creates a new project, links it with the previously created folder, and assigns to it a status: “In progress”.
- The employee scans mandatory documents and if available, complementary documents.
- If the folder is incomplete, the next step is blocked.
- If the folder is complete, the project is assigned to be scheduled for a decision meeting.
- The employee enters the meeting’s details, which include the date, time, mandatory and complementary commission services, and validates.
- The system sends notifications to the meeting members and the citizen, and generates a receipt to be given to the citizen.
- The employee prints the receipt.
- The citizen can either get the receipt from the employee or view it online.
- Each commission member enters an individual input on the project.
- The system generates a common input.
- Each member signs the common input, and it is then scanned and added to the folder.
- The president either validates or rejects the common input.
- If unfavorable, a justifying note is generated and handed to the citizen physically and online.
- If favorable, the project is sent to the taxation.
- The taxation calculates the tax depending on the surface area and the tax rate.
- The payment permit and the public domain occupation documents are generated.
- The employee prints both and hands them to the citizen.
- The citizen pays and brings them both signed, with a receipt.
- All documents are scanned.
- The system informs the architect and the architect signs all the folder’s documents.
- The system generates the construction permit.
- The president signs the construction permit.
- The employee scans the construction permit.
- The citizen can get it from the employee and view it online and print it.
7 USERS VS SYSTEM ACTIVITY DIAGRAMS

7.1 Citizen Vs System

The citizen first logs in using his/her credentials. If one or both credentials are incorrect, the citizen is redirected to an error page to enter the correct credentials. If the credentials are correct, the citizen is redirected to his/her main page.

The citizen has three choices, each lead to a different outcome:

- View my projects: The system displays the list of projects and a search bar. The citizen can search for a project using keywords, or pick a project from the displayed list. The citizen can view the project’s information, status, advancement, history, current step and steps left. The citizen can view the mandatory and complementary documents, receipts, permits and print them.

- View profile: The system displays the citizen’s profile.
7.2 Employee Vs System

The employee first logs in using his/her credentials. If one or both credentials are incorrect, the employee is redirected to an error page to enter the correct credentials. If the credentials are correct, the employee is redirected to his/her main page.

The employee has five choices, each lead to a different outcome:

- Enter new project’s details: The employee enters the project’s and citizen’s information and links it to a previously created folder.
- Choose ongoing project: The employee can either validate a project, so that the system moves it to the next step. He/she can print a document from a project, such as a permit or a receipt. He/she can modify a project’s details.
- View profile: The system displays the employee’s profile.

Figure 3 Employee Vs System
- Search: The employee can search for a project using keywords.
- Log out.

7.3 Commission Vs System

The commission member first logs in using his/her credentials. If one or both credentials are incorrect, the commission member is redirected to an error page to enter the correct credentials. If the credentials are correct, the commission member is redirected to his/her main page.

The commission member has three choices, each lead to a different outcome:
- Choose a scheduling: The system displays the project’s information. The member enters his/her individual input and validates.
- View profile: The system displays the commission member’s profile.
- Log out.

Figure 4 Commission Vs System
7.4 Taxation Vs System

The taxation employee first logs in using his/her credentials. If one or both credentials are incorrect, the taxation employee is redirected to an error page to enter the correct credentials. If the credentials are correct, the taxation employee is redirected to his/her main page.

The taxation employee has three choices, each lead to a different outcome:
- View projects to be taxed: The system displays the list of projects and a search bar. The employee can choose a project and calculate the taxes. The employee can search a project using keywords.
- View profile: The system displays the taxation employee’s profile.
- Log out.

Figure 5 Taxation Vs System
7.5 Architect Vs System

The architect first logs in using his/her credentials. If one or both credentials are incorrect, the architect is redirected to an error page to enter the correct credentials. If the credentials are correct, the architect is redirected to his/her main page.

The architect has four choices, each lead to a different outcome:

- View my projects: The system displays the list of projects and a search bar. The architect can choose a project and view its information and status. He/she can also search for a project using keywords.
- Create project: The architect enters the project’s and citizen’s information then validates. The system add the projects with an ID to the database.
- View profile: The system displays the architect’s profile.
- Log out.
The president first logs in using his/her credentials. If one or both credentials are incorrect, the president is redirected to an error page to enter the correct credentials. If the credentials are correct, the president is redirected to his/her main page. The president has four choices, each lead to a different outcome:

- **View projects that need a signature**: The system displays a list of projects and a search bar. The president can choose a project and display its information and status. He/she can then decide whether to sign it or not. The president can also search for a project using keywords.

- **View projects’ information, advancement and folder content**: The system displays a list of projects and a search bar. The president can choose a project and display its information and status. The president can also search for a project using keywords.

- **View profile**: The system displays the president’s profile.
- Log out.

7.7 Technician Vs System

The technician first logs in using his/her credentials. If one or both credentials are incorrect, the technician is redirected to an error page to enter the correct credentials. If the credentials are correct, the technician is redirected to his/her main page. The technician has three choices, each lead to a different outcome:

- View projects in my control zone: The system displays the list of projects and a search bar. The technician can search for a project using keywords, or pick a project from the displayed list. The technician can view the project’s information and status.
- View profile: The system displays the citizen’s profile.
- Log out.
The administrator first logs in using his/her credentials. If one or both credentials are incorrect, the administrator is redirected to an error page to enter the correct credentials. If the credentials are correct, the administrator is redirected to his/her main page.

The administrator has three choices, each lead to a different outcome:

- Create account/profile, modify or delete: The administrator enters the details and validates, or deletes. The system updates the database.

- Create, modify or delete a service: The administrator can enter the details of a service, assign a director and add employees. He/she can also delete it. The system updates the database.

- Log out.
8 DATA MODELLING

8.1. CONCEPTUAL DATA MODEL

8.1.1. Procedure

The conceptual data model is a high level representation of the data used in the business. It is described as a high level representation in the sense that it does not involve technical details related to the implementation. Its purpose is to give a global and clear view of the different entities of the business, as well the relationships between each one of them.

In order to obtain the different entities, the relationships between them and the generation of the Entity Relation Diagram (ERD), the MERISE methodology was used. The first step was the data gathering. Two main approaches were used: The deductive approach and the inductive approach.

The deductive approach or top-down approach moves from the general to the particular. In this case, it consisted of conducting interviews with the employees in Sefrou, in order to get the information on how the business works, and analyze it to get the specific data. The interviews were a set of questions that aimed at achieving the elicitation of the ambiguous and sometimes contradictory information collected, in order to obtain concise, precise and complete data after analyzing the information. The purpose was to understand the relationships between the different possible entities. For example, the employee would say they work with folders, which is general, and with directed questions we conclude that a folder has an ID, a set of documents, and belongs to a specific citizen.

The inductive approach or bottom-up approach moves from the particular and specific to the general. This approach first involves gathering documents and other evidence from the business or organization and extracting the data that is fields without meaning. After that, all these meaningless fields are organized in a “dictionary” and the main anomalies which are: synonymy, redundancy and homonymy are getting rid of. Synonymy means that two or more
fields have different names but have the same purpose (example: first name and prénom). Redundancy means that two or more fields have the same name and the same purpose (example: first name and first name). Homonymy means that two or more fields have the same name but different purposes (example: first name on a document might concern the citizen and first name on another document might concern the architect). The following step was to gather those fields and derive any possible entities from them. The data was derived from a set of documents in Arabic that contained the urbanism’s “Official Journal” that contains general texts describing the different rules governing several cases’ procedures, as well as the documents they use for issuing receipts, permits, taxation, commission decisions, demands etc.

8.1.2. Results

Identification and Description of the Entities

There are 19 entities:

- **Architect:** This entity represents the architects of the project. There are three types: the building architect, the specialized architect and the topographic architect. Its attributes are: Title, a First Name and a Last Name.

- **Building:** This entity represents the building that is involved in the project. Depending on the type of the project, the attributes of this entity either get a value or remain null. Its attributes are: Basement, Ground Floor, First Floor, Second Floor, Mezzanine and Balconies.

- **Citizen:** This entity represents the one who asks for a permit for a project. It could be an individual, a company or an organization. Its attributes are: Title, First Name, Last Name, Registre, CIN, Birth Date, Birth Place, Address, Phone, Email, Fax and Job.

- **Commission:** This entity represents the collection of services which judge the validity of a project. Depending on the type, the services vary. There are obligatory as well as complementary services in a commission. Its attributes are: Name.
- **Decision**: This entity represents the final decision concerning the validity of a project. It first is generated depending on the individual inputs then the President’s opinion. It is either positive or negative, and when it is negative, a justification must be given. Its attributes are: Nature and Description.

- **Document**: This entity represents the documents that make up a folder. They document the project and there are two types: Obligatory and complementary. Each project type requires a specific set of obligatory documents. The complementary ones vary. Its attributes are: Name, Add Date and Type.

- **Employee**: This entity represents the employees at the “Guichet Unique”. They take care of performing different tasks related to the projects, citizens, folders and documents. Its attributes are: Title, First Name and Last Name.

- **Folder**: This entity represents the folder that contains all the documents of the project. Its attributes are: Number and Add Date.

- **Individual Input**: This entity represents the individual decision of each commission member. It is either negative or positive and is accompanied with a justification. Its attributes are: Nature and Description.

- **Meeting**: This entity represents the scheduled meeting for evaluating a project. It gathers different commission members and depending on the type of the project, either it is scheduled and studied on the same day the project was submitted (small project), or within a maximum of three days starting the day the project was submitted (big project). Its attributes are: Start Date and End Date.

- **Permit**: This entity represents the different permits that are issued depending on the citizen’s demand. This project is concerned with the construction permit. Its attributes are: Name, Start Date, End Date, Add Date, Type (construction or else) and State (expired or not).
- **President**: This entity represents the President who gives the final decisions. Its attributes are: Title, First Name and Last Name.

- **Project**: This entity represents the projects that are submitted for approval. There are big projects and small projects. Its attributes are: Prefecture/Province, Commune, Region, Add Date, References, Other Info and Control Zone. Within big projects there are:
 - Subdivisions (“lotissements”).
 - Groupings of habitations (“groupements d’habitâts”).
 - Equipment (Tourism, sports complexes, schools, administrations, hospitals).
Within small projects there are:
 - Construction of individual housing (R+2)
 - Construction of a building in a subdivision (R+3)
 - Modifications of existing constructions.
 - Any project that is not a big project.

- **Receipt**: This entity represents the document that attests that a user did or received something. Its attributes are: Description, Add Date and Type (deposit or retrieval).

- **Service**: This entity represents the departments in the commune. Its attributes are: Name.

- **Status**: This entity represents the statuses of the project, which depend on which step the project is in, as well as its progress. Its attributes are: Name.

- **Step**: This entity represents the states a project goes through before the issuance of the construction permit. Its attributes are: Name and Num.

- **Tax**: This entity represents the result of the calculation of the project’s tax. Its attributes are: Date, Rate and Total.
- **Technician**: This entity represents the technician in charge of the project’s control zone. Its attributes are: Title, First Name and Last Name.

Entity Relation Diagram (ERD)

Following is the Entity Relation Diagram (ERD), as well as a description of its entities and their relationships:

![Figure 10 Entity Relation Diagram](image)

Description of the ERD

The Entity Relation Diagram above is constituted of 19 entities which are: **Architect**, **Building**, **Citizen**, **Commission**, **Decision**, **Document**, **Employee**, **Folder**, **Individual**
Input, Meeting, Permit, President, Project, Receipt, Service, Status, Step, Tax and Technician. We have 23 relations:

- **Project and Building:** Project involves Building and Building is contained in Project. One Project could involve One Building and One Building can be contained in One Project.

- **Tax and Project:** Tax is calculated from Project and Project has Tax. One Tax is calculated for One Project and One Project can have One Tax.

- **Project and Folder:** Project has Folder and Folder is for Project. One Project could involve One Folder and One Folder can be contained in One Project.

- **Document and Folder:** Document is contained in Folder and Folder contains Document. Many Documents can be contained in One Folder and One Folder can contain Many Documents.

- **Project and Step:** Project reaches Step and Step can be reached by Project. Many Projects can reach One Step and One Step can be reached by Many Projects.

- **Project and Status:** Project has Status and Status describes Project. Many Projects have One Status and One Status can describe Many Projects.

- **Project and Architect:** Project has Architect and Architect has Project. Many Projects have Many Architects and Many Architects have Many Projects.

- **Decision and President:** Decision is made by President and President makes Decision. Many Decisions are made by One President and One President makes Many Decisions.
- **Project and Decision**: Project is concerned with Decision and Decision is made on Project. One Project is concerned with One Decision and One Decision is made on One Project.

- **Project and Technician**: Project has Technician and Technician has Project. Many Projects have One Technician and One Technician has Many Projects.

- **Employee and Project**: Employee follows Project and Project is followed by Employee. One Employee follows Many Projects and Many Projects are followed by One Employee.

- **Employee and Receipt**: Employee gives Receipt and Receipt is given by Employee. One Employee gives Many Receipts and Many Receipts are given by One Employee.

- **Receipt and Citizen**: Receipt is given to Citizen and Citizen gets Receipt. Many Receipts are given to One Citizen and One Citizen receives Many Receipts.

- **Employee and Service**: Employee belongs to Service and Service includes Employee. Many Employees belong to One Service and One Service includes Many Employees.

- **Service and Commission**: Service is included in Commission and Commission includes Service. Many Services are included in Many Commissions and Many Commissions include Many Services.

- **Individual Input and Decision**: Individual Input affects Decision and Decision is affected by Individual Input. Many Individual Inputs affect One Decision and One Decision is affected by Many Individual Inputs.

- **Meeting and Commission**: Meeting includes Commission and Commission is involved in Meeting. Many Meetings include One Commission and One Commission is involved in Many Meetings.
- **Permit and Project:** Permit is given to Project and Project is given Permit. Many Permits can be given to One Project and One Project can be given Many Permits.

- **Permit and Document:** Permit is represented by Document and Document represents Permit. One Permit is represented by One Document and One Document represents One Permit.

- **Individual Input and Commission:** Individual Input is given by Commission and Commission gives Individual Input. Many Individual Inputs are given by One Commission and One Commission gives Many Individual Inputs.

- **Folder and Citizen:** Folder belongs to Citizen and Citizen has Folder. Many Folders belong to One Citizen and One Citizen has Many Folders.

- **Employee and Employee:** Employee is the superior of Employee and Employee is under Employee. One Employee is the superior of Many Employees and Many Employees are under One Employee.

- **Project and Citizen:** Project belongs to Citizen and Citizen has Project. Many Projects belong to One Citizen and One Citizen has Many Projects.

8.2. PHYSICAL DATA MODEL

8.2.1. Procedure

The physical data model is the representation of how the database is to be implemented. Unlike the conceptual data model, it takes into consideration the technical side of the data. It shows how the tables are structured, the names of the columns, their types, the constraints if any (example: unique), the primary key, the foreign keys, the relationships between tables (one to one, one to many) and the bridge tables in case of many to many relationships.
The following Enhanced Entity Relation Diagram was obtained by converting the entities present in the conceptual data model into tables, converting the relationships between entities into foreign keys, converting entities’ attributes into columns, assigning data types to them according to the technical requirements, and updating it considering any constraints. This diagram is accompanied by a description of the tables and relationships.

8.2.1. Enhanced Entity Relation Diagram
Figure 11 Enhanced Entity Relation Diagram
- **Division**: This represents the entity **Service**. It has three columns:
 - **Id**: Primary key. BIGINT (20).
 - **Name**: VARCHAR(255). This represents the name of the division. It depends on the commune’s divisions.
 - **Head_id**: Foreign key. BIGINT(20). This represents the head of a division, which is a **User** of type **Employee** or **President**. It links this table with the table **User** using a **One-To-One** relationship.

- **Receipttype**: This represents the entity **Receipt Type**. It has two columns:
 - **Id**: Primary Key. BIGINT(20).
 - **Type**: VARCHAR(255). This represents the name of the type, which is either **Deposit** or **Retrieval**.

- **Com_Serv**: This is a bridge table between **Commission** and **Division**. It has two columns:
 - **Com_Id**: Foreign key. BIGINT(20). This links this table to the table **Commission** by a **Many-To-One** relationship.
 - **Serv_Id**: Foreign key. BIGINT(20). This links this table to the table **Division** by a **Many-To-One** relationship.

- **Notificationtype**: This represents the entity **Notification Type**. It has two columns:
 - **Id**: Primary Key. BIGINT(20).
 - **Type**: VARCHAR(255). This represents the name of the type.

- **Commission**: This represents the entity **Commission**. It has two columns:
 - **Id**: Primary Key. BIGINT(20).
 - **Name**: VARCHAR(255). This represents the name of the commission. It reflects the type of the project to be judged.

- **Tax**: This represents the entity **Tax**. It has ten columns:
- **Id**: Primary Key. BIGINT(20).
- **Rate**: DOUBLE. This represents the tax rate.
- **addDate**: DATETIME. This represents the date and time the tax was generated.
- **Total**: DOUBLE. This represents the total surface area.
- **Proj_Id**: Foreign key. BIGINT(20). This represents the project for which the tax is being calculated. It links this table with the table Project using a Many-To-One relationship.

- **Projecttype**: This represents the entity Project Type. It has two columns:
 - **Id**: Primary Key. BIGINT(20).
 - **Type**: VARCHAR(255). This represents the name of the type. In the case of a big project, this can be “Lotissement”, “Groupement d’Habitat”, “Equipements”.

- **Project**: This represents the entity Project. It has twenty-nine columns:
 - **TYPE**: VARCHAR(25). This represents the types of the Project, and which are BIG or SMALL.
 - **Id**: Primary key. BIGINT(20).
 - **Address**: VARCHAR(255). This represents the address of the building to be constructed.
 - **Commune**: VARCHAR(255). This represents the commune under which the project is to be registered.
 - **depositDate**: VARCHAR(255). This represents the date the project was deposited.
 - **otherInfo**: VARCHAR(255). This represents any additional information not present in any other field.
 - **prefOrProv**: VARCHAR(255). This represents the prefecture or the province to which the project belongs.
 - **Refs**: VARCHAR(255). This represents the project’s references.
- **Region**: VARCHAR(255). This represents the region the project is to construct in.

- **Step**: Foreign key. BIGINT(20). This represents the step in which the project is. It links this table with the table **Step** using a **Many-To-One** relationship.

- **Subject**: VARCHAR(255). This represents the subject of the project.

- **delayDecMax**: INT(11). This represents the number of maximum days before a decision on the project is made.

- **delayProgMax**: INT(11). This represents the number of maximum days before a meeting to judge a project is made.

- **infoDoc**: LONGBLOB. This represents a document that describes the type of the project.

- **infoTxt**: VARCHAR(255). This represents a text that references the real life document used to extract the type of the project’s attributes.

- **Archm_Id**: Foreign key. BIGINT(20). This represents the architect of the project. It links this table with the table **User** using a **One-To-One** relationship.

- **Archs_Id**: Foreign key. BIGINT(20). This represents the specialized architect of the project. It links this table with the table **User** using a **One-To-One** relationship.

- **Archt_Id**: Foreign key. BIGINT(20). This represents the topographic architect of the project. It links this table with the table **User** using a **One-To-One** relationship.

- **Decision_Id**: Foreign key. BIGINT(20). This represents the decision about the project’s viability. It links this table with the table **Decision** using a **One-To-One** relationship.

- **Demander_Id**: Foreign key. BIGINT(20). This represents the demander (citizen) of the project, the one who wants the construction permit. It links this table with the table **User** using a **One-To-One** relationship.

- **Folder_Id**: Foreign key. BIGINT(20). This represents the folder of the project. It links this table with the table **Folder** using a **One-To-One** relationship.

- **Status_Id**: Foreign key. BIGINT(20). This represents the status of the project. It links this table with the table **Status** using a **Many-To-One** relationship.
- **Type_Id**: Foreign key. BIGINT(20). This represents the type of the type of project. It is different from the column “TYPE”. It links this table with the table *Projecttype* using a **Many-To-One** relationship.

- **Balconies**: DOUBLE. This represents the total surface of all the balconies.

- **Basement**: DOUBLE. This represents the total surface of the basement.

- **firstFloor**: DOUBLE. This represents the total surface of the first floor.

- **groundFloor**: DOUBLE. This represents the total surface of the ground floor.

- **Mezzanine**: DOUBLE. This represents the total surface of the mezzanine.

- **secondFloor**: DOUBLE. This represents the total surface of the second floor.

- **Usertype**: This represents the entity **User Type**. It has two columns:
 - **Id**: Primary Key. BIGINT(20).
 - **Type**: VARCHAR(255). This represents the name of the type. It can be either Citizen, Employee, ArchitectM, ArchitectS, ArchitectT, President, Technician, Commission(member), Taxation or Administrator.

- **Folder**: This represents the entity **Folder**. It has five columns:
 - **Id**: Primary Key. BIGINT(20).
 - **addDate**: DATETIME. This represents the date and time the folder was added to the system.
 - **Num**: VARCHAR(255). This represents the identifier number of the folder.
 - **Project_Id**: Foreign key. BIGINT(20). This represents the project to which the folder belongs. It links this table with the table *Project* using a **One-To-One** relationship.
 - **User_Id**: Foreign key. BIGINT(20). This represents the user to which the folder belong. It links this table with the table *User* using a **Many-To-One** relationship.

- **Step**: This represents the entity **Step**. It has four columns:
 - **Num**: Primary key. INT(11).
• **Name**: VARCHAR(255). This represents the name of the step. There are six steps.

• **State**: INT(11). This represents whether the step was completed.

• **Proj_Id**: Foreign key. BIGINT(20). This represents the project that is at that step. It links this table with the table *Project* using a **One-To-One** relationship.

- **Notification**: This represents the entity *Notification*. It has six columns:

 • **Id**: Primary key. BIGINT(20).

 • **addDate**: DATETIME. This represents the date and the time the notification is sent.

 • **Text**: VARCHAR(255). This represents the actual message in the notification.

 • **Receiver_Id**: Foreign key. BIGINT(20). This represents the receiver to which the notification is sent. It links this table with the table *User* using a **Many-To-One** relationship.

 • **Sender_Id**: Foreign key. BIGINT(20). This represents the sender by whom the notification is sent. It links this table with the table *User* using a **Many-To-One** relationship.

 • **Type_Id**: Foreign key. BIGINT(20). This represents the type of the notification. It links this table with the table *Notificationtype* using a **Many-To-One** relationship.

- **Document**: This represents the entity *Document*. It has eight columns:

 • **TYPE**: VARCHAR(25). This represents the types of the Document, and which are many and depend on the commune.

 • **Id**: Primary key. BIGINT(20).

 • **addDate**: DATETIME. This represents the date and time the document is added to the system.

 • **Document**: LONGBLOB. This represents the actual document, either a PDF or an image or else.

 • **Name**: VARCHAR(255). This represents the name of the document.

 • **Info**: VARCHAR(255). This represents the info on the document.
- **Folder_Id**: Foreign key. BIGINT(20). This represents the folder to which the document belongs. It links this table with the table **Folder** using a Many-To-One relationship.

- **Type_Id**: Foreign key. BIGINT(20). This represents the type of the document, whether it is Obligatory or Complementary. It links this table with the table **Documenttype** using a Many-To-One relationship.

- **Receipt**: This represents the entity **Receipt**. It has five columns:
 - **Id**: Primary key. BIGINT(20).
 - **addDate**: DATETIME. This represents the date and the time the receipt was sent.
 - **Text**: VARCHAR(255). This represents the actual content of the receipt.
 - **Receiver_Id**: Foreign key. BIGINT(20). This represents the receiver of the receipt. It links this table with the table **User** using a Many-To-One relationship.
 - **Type_Id**: Foreign key. BIGINT(20). This represents the type of the receipt. It links this table with the table **Receipttype** using a Many-To-One relationship.

- **History**: This represents the entity **History**. It has six columns:
 - **Id**: Primary key. BIGINT(20).
 - **addDate**: DATETIME. This represents the date and time the system generates the history.
 - **Folder_Id**: Foreign key. BIGINT(20). This represents the folder recorded in the history. It links this table with the table **Folder** using a Many-To-One relationship.
 - **Proj_Id**: Foreign key. BIGINT(20). This represents the project recorded in the history. It links this table with the table **Project** using a Many-To-One relationship.
 - **Step_Id**: Foreign key. BIGINT(20). This represents the step recorded in the history. It links this table with the table **Step** using a Many-To-One relationship.
- **User_Id**: Foreign key. BIGINT(20). This represents the user recorded in the history. It links this table with the table User using a **Many-To-One** relationship.

- **DocumentType**: This represents the entity **Document Type**. It has two columns:

 - **Id**: Primary Key. BIGINT(20).

 - **Type**: VARCHAR(255). This represents the name of the type. It can be either **Obligatory** and **Complementary**.

- **IndivInput**: This represents the **Individual Inputs** which represent the commission members’ opinion on a given project. It has seven columns:

 - **Id**: Primary Key. BIGINT(20).

 - **Comment**: VARCHAR (255).

 - **Result**: BIT(1). This represents whether the individual input was negative or positive (0 or 1).

 - **Decision_Id**: Foreign key. BIGINT(20). This represents the decision this individual input along with other individual inputs led to. It links this table with the table Decision using a **Many-To-One** relationship.

 - **Meeting_Id**: Foreign key. BIGINT(20). This represents the meeting that led to this individual input. It links this table with the table Meeting using a **Many-To-One** relationship.

 - **Proj_Id**: Foreign key. BIGINT(20). This represents the project to which the individual input belongs. It links this table with the table Project using a **Many-To-One** relationship.

 - **User_Id**: Foreign key. BIGINT(20). This represents the user that writes the individual input. It links this table with the table User using a **Many-To-One** relationship.

- **Meeting**: This represents the entity **Meeting**. It has six columns:

 - **Id**: Primary Key. BIGINT(20).

 - **endDate**: DATETIME. This represents the end date and time of the meeting.
- **startDate**: DATETIME. This represents the start date and time of the meeting.
- **Decision_Id**: Foreign key. BIGINT(20). This represents the decision that is
generated from the meeting. It links this table with the table **Decision** using a
One-To-One relationship.
- **Project_Id**: Foreign key. BIGINT(20). This represents the project the meeting
is held for. It links this table with the table **Project** using a **Many-To-One**
relationship.
- **Schedule_Id**: Foreign key. BIGINT(20). This represents the schedule that
organized the meeting. It links this table with the table **Schedule** using a **One-
To-One** relationship.

- **Permittype**: This represents the entity **Permit Type**. It has two columns:
 - **Id**: Primary Key. BIGINT(20).
 - **Type**: VARCHAR(255). This represents the name of the type.

- **Status**: This represents the entity **Status**. It has two columns:
 - **Num**: Primary key. INT(11).
 - **Status**: VARCHAR (255). This represents the name of the status.

- **User**: This represents the entity **User**. It has nineteen columns:
 - **DTYPE**: This represents the type of the user, which could be Citizen,
 Employee, ArchitectM, ArchitectS, ArchitectT, President, Technician,
 Commission(member), Taxation or Administrator. It links this table with the
table **Usertype** using a **Many-To-One** relationship.
 - **Id**: Primary Key. BIGINT(20).
 - **Address**: VARCHAR (255). This represents the address of the user.
 - **birthdate**: VARCHAR (255). This represents the birth date of the user.
 - **birthPlace**: VARCHAR (255). This represents the birth place of the user.
 - **CIN**: VARCHAR (255). This represents the national ID card number of the
 user.
 - **Email**: VARCHAR (255). This represents the email of the user.
- **Fax**: VARCHAR (255). This represents the fax number of the user.
- **Fname**: VARCHAR (255). This represents the first name of the user.
- **Job**: VARCHAR (255). This represents the job of the user.
- **Lname**: VARCHAR (255). This represents the last name of the user.
- **Password**: VARCHAR (255). This represents the password of the user.
- **Phone**: VARCHAR (255). This represents the phone number of the user.
- **Registre**: VARCHAR (255). This represents the register of the user.
- **Title**: VARCHAR (255). This represents the title of the user (Mr. Mrs. Miss etc).
- **Username**: VARCHAR (255). This represents the username of the user.
- **Serv_Id**: Foreign key. BIGINT(20). This represents the division the user works for. It links this table with the table **Division** using a Many-To-One relationship.

- **Permit**: This represents the entity **Permit**. It has eight columns:
 - **Id**: Primary Key. BIGINT(20).
 - **addDate**: DATETIME. This is the date the permit is added.
 - **endDate**: DATETIME. This is the date the permit expires.
 - **startDate**: DATETIME. This is the date the permit starts to be valid.
 - **Document_Id**: Foreign key. BIGINT(20). This represents the document form of the permit. It links this table with the table **Document** using a One-To-One relationship.
 - **Proj_Id**: Foreign key. BIGINT(20). This represents the project to which the permit is issued. It links this table with the table **Project** using a Many-To-One relationship.
 - **Type_Id**: Foreign key. BIGINT(20). This represents the type of the permit. It links this table with the table **Permittype** using a Many-To-One relationship.
 - **User_Id**: Foreign key. BIGINT(20). This represents the user to whom the permit is issued. It links this table with the table **User** using a Many-To-One relationship.
- **Decision**: This represents the **Decision** concerning a given project, that is based on the commission members individual inputs, as well the president’s opinion. It has six columns:

 - **Id**: Primary Key. BIGINT(20).
 - **Comment**: VARCHAR (255). This represents the text decision, whether it is favorable or unfavorable.
 - **Result**: BIT(1). This represents the nature of the decision. Positive or negative (0 or 1).
 - **Validated**: BIT(1). This represents whether the president validated the result from the members (0 or 1).
 - **Meeting_Id**: Foreign key. BIGINT(20). This represents the meeting that led to the individual inputs that led to the decision. It links this table with the table **Meeting** using a One-To-One relationship.
 - **Project_Id**: Foreign key. BIGINT(20). This represents the project that the decision belongs to. It links this table with the table **Project** using a One-To-One relationship.
9 DESIGN

9.1 SYSTEM ARCHITECTURE

9.1.1 Description

The architecture of this system is an N-Layered Architecture. An N-Layered Architecture is what Enterprise Applications follow. It is mainly organized into multiple layers, each responsible for a specific task. In general, it is composed of a Presentation Layer, a Middle Layer and a Data Layer.

The Presentation Layer sits between the end users and the application. Through the browser, they access it and interact with it. It consists of the views, the graphical user interface and the dispatching servlet. It captures the input of the users, forwards it to the application for processing, then if available, the application sends the output to this layer that displays it to the users. The forwarding of data is possible through the Data Binding Components (for example, field names with variable names) and the Object Representations of data present in this layer.

The Middle Layer, also called the Business Layer, sits between the first and the third layer. They both communicate through this layer, and not directly with each other. It consists of the Business Logic that follows the business rules and the business constraints, as well as Data Access Components that allow the communication with the third layer. The end user is not able to communicate directly with this layer, and should go through the presentation layer in order to send or receive data through the browser thanks to a protocol.

The Data Layer is the third layer and it communicates with the middle layer. That communication is allowed by an API (a database connectivity) present in the middle layer. The data layer is typically a server that stores data (for example, MySQL), in the form of databases. Those databases are a set of tables with columns and relationships (one-to-one, one-to-many, many-to-many through bridge tables), in case of a relational database (which is the case most of the time).
9.1.2. Advantages

The N-Layered Architecture has many advantages from which are the following:

- **Easier Maintenance:** Due to its layered structure, it is easier and less time consuming to maintain. For example, if one layer needs enhancements or tune-ins, there is no need to go through all the other layers in order to change or update it. Layers are independent from each other but communicate with each other.

- **Enhanced Security:** It is less likely to suffer from security attacks due to the separation of tasks between the layers, as well as restricting the possible threats (malicious end-users) to have access to the middle or data layer, since they can only interact with the presentation layer. It would require much more effort and time for a hacker to bypass those restrictions.

- **Enhanced Fault Tolerance:** If one part of a layer goes down, the application does not necessarily crash as well. Only the functionalities related to that part are disabled. Due to it being modular, although one module goes down, the other modules can still be operational.

- **Enhanced Reusability:** Its modular nature allows the different functionalities and code to be reused in other applications. For example, the login is a standard module. There is no need to reinvent the wheel when the application is modular.

9.2. TECHNOLOGY ENABLERS

9.2.1. IDE (Integrated Development Environment)

- **Eclipse:** It is written in Java and allows the development of Java applications as well as others. It supports plug-ins that can greatly extend its features.
9.2.2. Web Container

- **Tomcat**: It is a free HTTP (HyperText Transfer Protocol) web container that belongs to the Apache Software Foundation, and that was written in the Java language. It executes within a Java Virtual Machine (JVM). It manages servlets and JSP using a compiler called Jasper that compiles JSP into servlets, allowing dynamic web content (getting input from the end-user for processing, and displaying the output to the end-user).

9.2.3. Presentation and Web Layer

- **HTML**: It stands for HyperText Markup Language and is a language that allows creating pages accessible on the internet using markup. It means that it uses tags to render the content of the page (for example, the text font).

- **Bootstrap**: It is a very popular front-end (HTML/CSS/JS) framework for formatting web pages content. It is free (open source) can be integrated in many development environments.

- **JavaScript**: It is a dynamic and interpreted programming language. It allows the creation of dynamic content (client-side script) for the end-user to interact with (for example, a button that when it is clicked displays the time real-time).

- **JSP**: It stands for JavaServer Pages, and is used along with HTML and JavaScript to generate dynamic web pages. It also plays the role of a servlet during execution-time, captures the end-user input to be processed in the business layer and displays output.

- **Spring MVC**: It stands for Spring Model-View-Controller and is a framework that is designed around what is called a “DispatcherServlet”, which dispatches requests to the appropriate handlers. The DispatcherServlet receives a request with a URI-pattern. It consults its handler mapping to select the controller which bean name is the URI-
pattern. It dispatches the request to the selected controller that returns to the DispatcherServlet an object of type ModelandView that holds the logical name of the view to display. The DispatcherServlet finds the view thanks to the InternalResourceViewResolver, then forwards the request to it.

9.2.4. Business and DAO (Data Access Object) Layer

- **Spring IOC**: It stands for Spring Inversion of Control. It is a container that manages dependencies injection (JPA, Hibernate, JDBC…), and which links implementation classes to their interface classes. It uses 3 key elements which are: the XML configuration that links the implementations to their interfaces, the classes that are beans and that possess getters and setters for the fields to be injected, and the XML file applicationContext.xml in which the injection is made. IOC uses annotations for simplification.

- **JPA**: The Java Persistence API allows Object Relational Mapping, which means that it maps the Java classes (entities) to tables in a database and vice-versa. A database can be created out of Java classes and vice-versa. It relies on annotations that specify that a class in an Entity (@Entity), as well as the relationships between them (@OneToOne), and an instantiation of the EntityManager class which, as its name implies, manages the entities and CRUD operations in the database.

- **Hibernate**: It is an implementation of JPA, since JPA is only a standard that sets the rules to be followed to achieve Object Relational Mapping. JPA is the theory and Hibernate is the practice.

- **JDBC**: It stands for Java DataBase Connectivity, and it is an API that enables connecting and interacting with the database.
9.2.5. Data Layer

- **MySQL**: It is a database management system. Its purpose is to create, retrieve, update, delete and manage data in a database.

9.3. ENHANCED SYSTEM ARCHITECTURE

![Enhanced System Architecture Diagram]

Figure 12 Enhanced System Architecture
10 IMPLEMENTATION

The system is still under construction and so far is structured as follows:

Main xml files for configuration and dependency injection:
- applicationContext.xml
- persistence.xml
- servlet-context.xml
- web.xml
- log4j.xml
- pom.xml

Middle Layer packages and classes under org.projet.urbanisme:
- Entities:
 - Administrator.java
 - ArchitectM.java
 - ArchitectS.java
 - ArchitectT.java
 - Citizen.java
 - ComMember.java
 - Commission.java
 - Decision.java
 - Division.java
 - Document.java
 - DocumentType.java
 - Employee.java
 - Folder.java
 - History.java
 - IndivInput.java
 - Meeting.java
 - Notification.java
 - NotificationType.java
- Permit.java
- PermitType.java
- President.java
- Project.java
- ProjectBig.java
- ProjectSmall.java
- ProjectType.java
- Status.java
- Step.java
- Tax.java
- Taxation.java
- Technician.java
- User.java
- UserType.java

- Metier:
 - IUrbanMetier.java (Interface)
 - UrbanMetierImpl.java (Its implementation)

- DAO:
 - IUrbanDao.java (Interface)
 - UrbanDaoImpl.java (Its implementation)

- Models:
 - CitForm.java
 - ComForm.java
 - EmpForm.java
 - ProgForm.java
 - ProjectFrom.java
 - ServForm.java
 - UrbanForm.java
 - UserForm.java

- Controllers:
 - UrbanController.java
Presentation and Web Layer:
Under this part the JSP and/or html views are found, as well as any CSS style sheets or images to be used in the views, as well the spring configuration files that allow mapping those resources and enabling the communication between views, models and controllers.
11 MAIN CHALLENGES AND LESSONS LEARNED

The main challenges encountered during this capstone project are the following:
- Very little to inexistent knowledge about the urbanism service
- Data documents in Arabic
- General tiredness
- Average mastery of some of the technology enablers
- Heavy course load
- Overwhelming stress
- Intermittent lack of confidence
- Lack of time
- Average time management planning.

The main lessons learned during this capstone project are the following:
- A better and deeper knowledge about the urbanism service in Morocco
- A better mastery of the technology enablers
- A clearer idea on better time management planning
- A clearer idea on the prospects for the future
- A better endurance for future big projects
12 CONCLUSION

This final report describes the work done in this capstone project. It reports the methodology used, which is a mix of primary and secondary research. It also contains the STEEPLE analysis. This project has a great impact on the societal and ethical components. It has a moderate impact on the environmental, legal and economic aspects. It has a negligible impact on the technological aspect and an inexistente impact on the political component.

For the requirements engineering step, it includes the requirements specification, which consists of both the functional and non-functional requirements, and includes several activity diagrams which purpose is to enhance the understanding of the system to be implemented, as well as their descriptions. The workflow diagram gives a high level view of the different steps from the start of a construction request, until the issuance of the permit. It also shows the interactions between all the actors during that process. The users vs system diagrams show the individual interactions of each type of user with the system.

For the data modelling step, it contains the conceptual data model and the procedure followed in order to obtain it, in addition to the physical data model in the form of an enhanced entity relation diagram as well as the steps to produce it. For the design step, it includes a description of the conceptual system architecture followed, as well as its advantages, a description of the numerous technology enablers, as well as the enhanced system architecture that is more logical and that is obtained by adapting the conceptual system architecture to the technology enablers.

For the implementation step, the progress is reported and the main components of the system so far are underlined. Many of the functionalities are still being developed and more changes are to come in the updated final report version.
سلام:

لورد [الاسم]

المرجع:...

الموضوع: تنسيق المحتوى: فتح أسئلة وأمور متعلقة بالموضوع

الجديد الملموس:...

الموافق على تنسيق المحتوى الذي تم تقديمه.

أثناء الالتزام بالمعايير، يتم تطبيق إجراءات محددة للتأكد من التزام جميع الأطراف.

معنوي:...

المحترم، نحن في خدمتك.

التسجيل:

الموافق على:...

الجديد الملموس:...

الموافق على:...

معنوي:...

المحترم، نحن في خدمتك.

التسجيل:

تم تطبيق إجراءات محددة للتأكد من التزام جميع الأطراف.

معنوي:...

المحترم، نحن في خدمتك.

التسجيل:

إضافة وتحديث الوكالة الخضراء.

67