Degree functions and projectively full ideals in
two-dimensional rational singularities that can be
desingularized by blowing up the unique maximal ideal

Veronique Van Lierde

Al Akhawayn University, Ifrane 53000, Morocco

Abstract
Let \((R, m)\) be a 2-dimensional rational singularity with algebraically closed
residue field and for which the associated graded ring is an integrally closed do-
main. According to Göhner, \((R, m)\) satisfies condition \((N)\): given a prime divi-
sor \(v\), there exists a unique complete \(m\)-primary ideal \(A_v\) in \(R\) with \(T(A_v) = \{v\}\)
and such that any complete \(m\)-primary ideal with unique Rees valuation \(v\), is
a power of \(A_v\). We use the theory of degree functions developed by Rees and
Sharp as well as some results about regular local rings, to investigate the degree
coefficients \(d(A_v, v)\). As an immediate corollary, we find that for a simple
complete \(m_1\)-primary ideal \(I_1\) in an immediate quadratic transform \((R_1, m_1)\) of
\((R, m)\), the inverse transform of \(I_1\) in \(R\) is projectively full.

Key words: degree function, Rees valuation, quadratic transformation,
2-dimensional rational singularity, projectively full ideal

2000 MSC: 13B22, 13H10

1. Introduction

The purpose of this paper is to study the degree coefficients \(d(A_v, v)\) of
one-fibered ideals \(A_v\) in a 2-dimensional rational singularity \((R, m)\) with alge-
braically closed residue field and for which the associated graded ring is an inte-
grally closed domain. In [6, prop. 3.5] it was shown that, for every prime
divisor \(v\) of a 2-dimensional regular local ring \((R, m)\) with algebraically closed
residue field, there exists a unique complete \(m\)-primary ideal \(I\) of \(R\) such that
\(T(I) = \{v\}\) and \(d(I, v) = 1\). It was also shown that this is no longer true if \((R, m)\)
is not regular [6, example 4.1]. In this paper we work in 2-dimensional rational
singularities that can be desingularized by blowing up the unique maximal ideal.
We will now give a brief overview of the definition and of some properties of a
2-dimensional rational singularity. Let \((R, m)\) be a 2-dimensional analytically

Email address: v.lierde@aui.ma (Veronique Van Lierde)
normal local domain with infinite residue field. If \(I \) is an \(m \)-primary ideal of \(R \), then
\[
\ell \left(\frac{R}{I^n} \right) = \tau_0(I) \left(\frac{n + 1}{2} \right) - \tau_1(I) \left(\frac{n}{1} \right) + \tau_2(I)
\]
for all \(n > 0 \), where the coefficients \(\tau_i(I) \) are integers. The function \(H_I(n) := \ell \left(\frac{R}{I^n} \right) \) is called the normal Hilbert function of \(I \) and the polynomial \(P_I(n) := \tau_0(I) \left(\frac{n + 1}{2} \right) - \tau_1(I) \left(\frac{n}{1} \right) + \tau_2(I) \) is called the normal Hilbert polynomial of \(I \). A 2-dimensional analytically normal local ring \((R, m)\) (with infinite residue field) is called a rational singularity if \(\tau_2(I) = 0 \) for any \(m \)-primary ideal \(I \) of \(R \). If one replaces the condition analytically normal in the previous definition by normal and analytically unramified, then \((R, m)\) is called pseudo-rational [12].

For a 2-dimensional analytically normal local ring \((R, m)\) with infinite residue field, the following are equivalent:

- \((R, m)\) is a rational singularity.
- For any \(m \)-primary ideal \(I \) of \(R \) one has \(H_I(n) = P_I(n) \) for all \(n \geq 0 \).
- For any \(m \)-primary ideal \(I \) of \(R \) and any minimal reduction \((x, y)\) of \(I \) one has \((x, y)^{\frac{n}{1}} = I^{n + 1} \) for all \(n \geq 1 \).
- For any complete \(m \)-primary ideal \(I \) of \(R \) one has \(e(I) = \ell \left(\frac{R}{I^n} \right) - 2\ell \left(\frac{R}{I} \right) \) and \(I^n = I^{n+1} \) for all \(n \geq 1 \).

In a 2-dimensional rational singularity \((R, m)\), the product of complete ideals is complete again. S.D. Cutkosky has shown in [4] that the converse also holds if \((R, m)\) is a 2-dimensional analytically normal local domain with algebraically closed residue field. A 2-dimensional rational singularity has minimal multiplicity, i.e.
\[
\text{emb dim} R = e(R) + 1.
\]

According to Göhner [8, corollary 3.11], a 2-dimensional rational singularity satisfies condition \((N)\). Given a prime divisor \(v \), there exists a unique complete \(m \)-primary ideal \(A_v \) in \(R \) with \(T(A_v) = \{v\} \) and such that any complete \(m \)-primary ideal with unique Rees valuation \(v \), is a power of \(A_v \). Also, there exists a positive integer \(s \) such that for every complete \(m \)-primary ideal \(I \) in \(R \), there is a unique decomposition \(I^s = \prod_{v \in T(I)} A_v^s \). Here \(T(I) \) denotes the set of all Rees valuations of \(I \).

Using (1) and the work of Göhner [8, section 2], we study, for a rational singularity, the behavior of the degree coefficients \(d(I, v) \) under a quadratic transformation. These coefficients were introduced by D. Rees in [11]. Let \((R, m)\) be a local domain with quotient field \(K \). With an \(m \)-primary ideal \(I \) of \(R \), Rees associated an integer-valued function \(d_I \) on \(m \setminus \{0\} \) as follows:
\[
d_I(x) = e \left(\frac{I + xR}{xR} \right)
\]
where $e(I, v)$ is the multiplicity of I at v. For every prime divisor v of R, there is an associated non-negative integer $d(I, v)$, with $d(I, v) = 0$ for all except finitely many v, such that
\[
d(I, v) = \sum_v d(I, v)v(x) \quad \forall 0 \neq x \in m
\]
where the sum is over all prime divisors v of R ([11], Thm. 3.2). By a prime divisor v of R we mean a discrete valuation v of K which is non-negative on R and has center m on R and whose residual transcendence degree is $\dim R - 1$. The set of all prime divisors of R will be denoted by $P(R)$. In case (R, m) is analytically unramified, $d(I, v) \neq 0$ for all $v \in P(R)$ that are Rees valuations of I as defined by Rees in [11], whereas $d(I, v') = 0$ for all other prime divisors v' of R. We will give more background information on degree functions and on quadratic transformations in section 2.

We will assume for the remainder of this section that (R, m) is a 2-dimensional rational singularity with algebraically closed residue field R/m. We will also assume that the associated graded ring $gr_m R$ is an integrally closed domain. This implies that ord_R is a valuation and that $B\ell_m R$ is a desingularization of R [8, 9]. Here $B\ell_m R$ denotes the scheme $\text{Proj}(\oplus_{n \geq 0} m^n)$ obtained by blowing up m. Let I be a complete m-primary ideal of (R, m) and let R_1, \ldots, R_n be the immediate base points of I. In [7, corollary 3.4] the following inequality for the multiplicity $e(I)$ of I was obtained:
\[
e(I) \leq e(m)\text{ord}_R(I)^2 + e(I^{R_1}) + \ldots + e(I^{R_n})
\]
where I^{R_i} denotes the transform of I in R_i. The rings R_1, \ldots, R_n are 2-dimensional regular local rings.

In section 3 we obtain the following result. Let $v \neq \text{ord}_R$ be a prime divisor of R and let A_v be the unique complete m-primary ideal of R with $T(A_v) = \{v\}$ and such that any complete m-primary ideal of R with v as its unique Rees valuation, is a power of A_v. Let R_1 denote the unique immediate base point of A_v and let $A_v^{R_i}$ denote the transform of A_v in R_i. In theorem 3.3 we will show that
\[
d(A_v, v) = d(A_v^{R_i}, v).
\]
For a simple complete m_1-primary ideal I_1 in an immediate quadratic transform (R_1, m_1) of (R, m) with $T(I_1) = \{v\}$, we find that the inverse transform I of I_1 in R is a complete m-primary ideal of R with $T(I) = \{v\}$ or $T(I) = \{v, \text{ord}_R\}$ and that $d(I, v) = 1$. We also give an example.

In section 4, we apply these results to provide a short proof for the fact that the inverse transform in R of a simple complete m_1-primary ideal of an immediate quadratic transform (R_1, m_1), is projectively full.

2. Background

Let (R, m) be a 2-dimensional Noetherian local domain with fraction field K. The integral closure of an ideal I of R is denoted by \overline{I}. The ideal I is called
integrally closed or complete if $\bar{I} = I$.

We will now briefly recall the definition of the Rees valuations and the Rees valuation rings of an m-primary ideal I of R. Let t be an indeterminate over R and let $R[t, t^{-1}]$ be the following subring of $R\langle t, t^{-1} \rangle$: $R[t, t^{-1}] = \oplus_{n\in\mathbb{Z}} I^n t^n$ where $I^n = R$ if $n \leq 0$. Let $\bar{R}[t, t^{-1}]$ denote the integral closure of $R[t, t^{-1}]$ in its fraction field $K(t)$ and let $\{P_1, \ldots, P_n\}$ be the set of minimal primes of $(t^{-1})\bar{R}[t, t^{-1}]$. Then $\bar{R}[t, t^{-1}]$ is a Krull domain and each P_i is a height one prime and consequently, $(\bar{R}[t, t^{-1}])_{P_i}$ is a discrete valuation ring of $K(t)$ for $i = 1, \ldots, n$. The Rees valuation rings of I are

$$V_i := (\bar{R}[t, t^{-1}])_{P_i} \cap K \quad i = 1, \ldots, n.$$

The corresponding discrete valuations v_1, \ldots, v_n are called the Rees valuations of I and the set of these Rees valuations is denoted by $T(I)$:

$$T(I) = \{v_1, \ldots, v_n\}.$$

Using the Rees valuation rings of I, the integral closure \bar{I} of I is given by

$$\bar{I} = \cap_{i=1}^n I V_i \cap R.$$

As written in the introduction, the degree function d_I of an m-primary ideal I in a Noetherian local domain (R, m) can be written as follows:

$$d_I(x) = \sum_{v \in \mathcal{P}(R)} d(I, v)v(x) \quad \forall 0 \neq x \in m.$$

In [14] Rees and Sharp have proved that the integers $d(I, v)$ are uniquely determined by the previous condition, i.e. suppose that

$$\sum_{v \in \mathcal{P}(R)} d(I, v)v(x) = \sum_{v \in \mathcal{P}(R)} d'(I, v)v(x) \quad \forall 0 \neq x \in m$$

then $d(I, v) = d'(I, v)$ for every prime divisor v of R. From this uniqueness it follows that for m-primary ideals I and J in a 2-dimensional Noetherian local domain (R, m), one has that

$$d(IJ, v) = d(I, v) + d(J, v)$$

for every prime divisor v of R [14, lemma 5.1]. If we make the additional assumption that R is analytically unramified and normal, then this implies that

$$T(IJ) = T(I) \cup T(J).$$

In [14, theorem 4.3] Rees and Sharp have shown that for an m-primary ideal I in a 2-dimensional local domain (R, m), the multiplicity $e(I)$ of I is given by

$$e(I) = \sum_{v \in \mathcal{P}(R)} d(I, v)v(I).$$

4
For I and J m-primary ideals in a 2-dimensional Cohen-Macaulay local domain (R, m), Rees and Sharp define

$$d_I(J) = \min\{d_I(x) \mid 0 \neq x \in J\}$$

and they have proved [14, theorem 5.2] that

$$d_I(J) = \sum_{v \in P(R)} d(I, v) v(J)$$

and

$$d_I(J) = d_J(I) = e_1(I|J)$$

Here $e_1(I|J)$ denotes the mixed multiplicity of I and J and $e_1(I|J)$ is defined by $e(I.J) = e(I) + 2e_1(I|J) + e(J)$ [15, p. 1037].

We end this section with the following result of Rees and Sharp [14, corollary 5.3]. Let I and J be m-primary ideals in the 2-dimensional Cohen-Macaulay local domain (R, m).

Then the following three statements are equivalent:

1. $\bar{I} = \bar{J}$
2. $d_I(x) = d_J(x)$ $\forall x \in m \setminus \{0\}$
3. $d(I, v) = d(J, v)$ $\forall v \in P(R)$

Finally, we briefly recall the following notions: immediate quadratic transform R_1 of R, transform I_1 of an ideal I of R in R_1, immediate base point R_1 of an ideal I of R. From now till the end of the introduction we shall assume that the local ring (R, m) is a 2-dimensional rational singularity with infinite residue field and for which the associated graded ring is an integrally closed domain. If $x \in m \setminus m^2$ and if N is a maximal ideal in $R[\frac{m}{x}]$ lying over m (i.e. $N \cap R = m$), then the ring

$$R_1 = R[\frac{m}{x}]_N$$

is called an immediate (or a first) quadratic transform of R. Let I be an m-primary ideal of R. If $\text{ord}_R(I) = r$ (i.e. $I \subseteq m^r$ but $I \not\subseteq m^{r+1}$), then we have in R_1 that

$$IR_1 = x^rI_1$$

where I_1 denotes an ideal in R_1 called the transform of I in R_1. In case $I_1 \neq R_1$, we say that (R_1, m_1) is an immediate base point of I. Here m_1 denotes the maximal ideal of the local ring R_1. A given m-primary ideal I in R has only finitely many immediate base points.

3. Main result

Let (R, m) be a 2-dimensional rational singularity with algebraically closed residue field R/m, and for which the associated graded ring gr_mR is an integrally closed domain. This implies that $T(m) = \{\text{ord}_R\}$ and that $B\ell_mR$ is a desingularization of R.

5
Lemma 3.1. Let \((R, m)\) be a 2-dimensional rational singularity with algebraically closed residue field, and suppose that the associated graded ring is an integrally closed domain. Let \(I\) be a complete \(m\)-primary ideal in \(R\) with \(T(I) = \{v\}\) and \(v \neq \text{ord}_R\). Then \(I\) has only one immediate base point \(R_1\). Let \(I_1\) denote the transform of \(I\) in \(R_1\). Then \(T(I_1) = \{v\}\) and \(d(I, v) \leq d(I_1, v)\).

Proof. Let \((R_1, m_1)\) be the unique local ring of the complete normal model \(B\ell_m R\) dominated by the valuation ring \((V, m_V)\) of \(v\). Since \((V, m_V)\) is the unique Rees valuation ring of \(I\), it follows that \((R_1, m_1)\) is the unique immediate base point of \(I\). Because of [8, proposition 2.9], there is an integer \(e > 0\) such that the transform of \(I'\) in \(R_1\) has \(v\) as its unique Rees valuation. Since \(R_1\) is regular and hence a UFD, we can take \(e = 1\) and so \(T(I_1) = \{v\}\).

Let \(R_1\) be of the following form: \(R_1 = R[[\frac{m}{m}]]_N\), with \(x \in m \setminus m^2\) and \(N\) a maximal ideal in \(R[[\frac{m}{m}]]\) lying over \(m\). Let \(r := \text{ord}_R(I)\). Then \(IR_1 = x^rI_1\).

From section 2, it follows that \(e(I) = d(I, v)\). Since \(I\) has one immediate base point \(R_1\), it follows from (1) that

\[e(I) \leq e(m)r^2 + e(I_1). \]

Since \(e(m) = d(m, \text{ord}_R)\) and since \(v(I) = rv(m) + v(I_1)\), this implies that

\[d(I, v)(rv(m) + v(I_1)) \leq d(m, \text{ord}_R)r^2 + d(I_1, v)v(I_1). \]

From the theory of degree functions, it follows that \(d(I, v)v(m) = d_I(m) = d_m(I) = d(m, \text{ord}_R)r\). So

\[d(I, v)v(I_1) \leq d(I_1, v)v(I_1). \]

Since \(v(I_1) > 0\), it follows that \(d(I, v) \leq d(I_1, v)\). \(\Box\)

Let \(v \neq \text{ord}_R\) be a prime divisor of \(R\) and let \(A_v\) be the unique complete \(m\)-primary ideal of \(R\) with \(T(A_v) = \{v\}\) and such that any complete \(m\)-primary ideal of \(R\) with \(v\) as its unique Rees valuation, is a power of \(A_v\). Let \(R_1\) denote the unique immediate base point of \(A_v\) and let \(A_v^{R_1}\) denote the transform of \(A_v\) in \(R_1\). Then we will show that

\[d(A_v, v) = d(A_v^{R_1}, v). \]

In order to do this, we need the notion of inverse transform. Let \(I_1\) be a complete \(m_1\)-primary ideal in an immediate quadratic transform \((R_1, m_1)\) of \((R, m)\). Then \(R_1\) is of the form \(R_1 = R[[\frac{m}{m}]]_N\), with \(x \in m \setminus m^2\) and \(N\) a maximal ideal in \(R[[\frac{m}{m}]]\) lying over \(m\). Let \(a\) be the smallest positive integer so that \(a^I_1\) is extended from \(R\) i.e. there exists an ideal \(J\) of \(R\) such that \(a^I_1 = JR_1\). Then

\[I := a^I_1 \cap R \]

is called the inverse transform of \(I_1\) in \(R\). It is clear that \(a^I_1 = IR_1\) and \(IR_1 \cap R = I\), so \(I\) is contracted from \(R_1\). Note also that \(a = \text{ord}_R(I)\). Since \(I_1\) is \(NR[[\frac{m}{m}]]_N\)-primary, there is exactly one \(N\)-primary ideal in \(R[[\frac{m}{m}]]\), say \(I'\), such that \(I_1 = I'_N\).

The following result is known but we include a proof for clarity.
Let I' be the transform of I in $R[\frac{m}{x}]$, i.e., $IR[\frac{m}{x}] = x^a I'$. The inverse transform I of I_1 has R_1 as its unique immediate base point.

Proof. As the residue field of R is algebraically closed, we may suppose without loss of generality that the element $x \in m \setminus m^2$ is chosen in such a way that all immediate base points of I are localizations of $R[\frac{m}{x}]$. Let b be the smallest positive integer such that x^bI' is extended from R, i.e., $x^bI' = (x^bI' \cap R)R[\frac{m}{x}]$.

This implies that x^bI_1 is extended from R and hence $b \geq a$. Since $I = x^aI' \cap R$, it is sufficient to prove that $b = a$. Suppose $b > a$, then

$$(x^bI' \cap R)R[\frac{m}{x}]|_N = m^{b-a} \cdot IR[\frac{m}{x}]|_N$$

and since $x^bI' \cap R$ and $m^{b-a}I$ are contracted from $R[\frac{m}{x}]|_N$, contraction to R implies

$$x^bI' \cap R = m^{b-a}I.$$

Extension to $R[\frac{m}{x}]$ yields

$$x^bI' = x^{b-a}IR[\frac{m}{x}]$$

and this implies that

$$x^aI' = IR[\frac{m}{x}]_1.$$

Thus x^aI' is extended from R, so by the choice of b one has $a \geq b$, which contradicts with $b > a$.

Since N is the only height two prime ideal containing I' and since $IR[\frac{m}{x}] = x^aI'$, it follows that R_1 is the unique immediate base point of I. □

We are now ready to prove our main result.

Theorem 3.3. Let (R,m) be a 2-dimensional rational singularity with algebraically closed residue field, and suppose that the associated graded ring is an integrally closed domain. Let $v \neq \text{ord}_R$ be a prime divisor of R and let A_v be the unique complete m-primary ideal of R with $T(A_v) = \{v\}$ and such that any complete m-primary ideal of R with v as its unique Rees valuation, is a power of A_v. Let R_1 denote the unique immediate base point of A_v and let $A_v^{R_1}$ denote the transform of A_v in R_1. Then $d(A_v, v) = d(A_v^{R_1}, v)$.

Proof. Since A_v is one-fibered, it follows from lemma 3.1 that A_v has one immediate base point (R_1, m_1) and that $T(A_v^{R_1}) = \{v\}$. Then R_1 is of the form $R_1 = R[\frac{m^2}{x}]$, with $x \in m \setminus m^2$ and N a maximal ideal in $R[\frac{m^2}{x}]$ lying over m. Since $A_v^{R_1}$ is a complete m_1-primary ideal in R_1 with unique Rees valuation v, and since (R_1, m_1) is a 2-dimensional regular local ring, it follows from Zariski’s Unique Factorization Theorem [16] and from [6, proposition 3.5] that $A_v^{R_1} = I_1^h$, with I_1 a simple complete m_1-primary ideal in R_1, $T(I_1) = \{v\}$ and $d(I_1, v) = 1$.

Since $T(A_v) = \{v\}$, it follows from lemma 3.1 that $d(A_v, v) \leq d(I_1^h, v)$. Since $d(I_1, v) = 1$, we have $d(I_1^h, v) = k$.

Let I be the inverse transform of I_1 in R. Then $x^aI_1 = IR_1$ and $a = \text{ord}_R(I)$. Since $I = x^aI_1 \cap R$, it follows that I is a complete m-primary ideal of R.
Because of lemma 3.2, R_1 is the only immediate base point of I. This implies that the blow-up $Bl_{I_1} R$ of R at I_1 is obtained from $Bl_{m} R$ by blowing up R_1 at I_1 while leaving all the other local rings of $Bl_{m} R$ unaltered.

It follows that

$$T(Im) = T(I) \cup T(m) = \{v, \ord_R\}.$$

This implies that $T(I) = \{v\}$ or $T(I) = \{v, \ord_R\}$.

Case I. $T(I) = \{v\}$.

Since $I^{R_1} = I_1$, lemma 3.1 implies that $d(I, v) \leq d(I_1, v) = 1$. Since I is a complete m-primary ideal of R with $T(I) = \{v\}$, it follows that $I = A_v^s$ for some positive integer e. So

$$1 = d(I, v) = ed(A_v, v).$$

So in this case, $e = 1$ and $I = A_v$, and $d(A_v, v) = 1$.

Case II. $T(I) = \{v, \ord_R\}$.

In this case, it follows from [8, corollary 3.11] that

$$I^s = A_v^s m^f$$

for some positive integers s, e, f. Since I has one immediate base point R_1 and since $(I^s)^{R_1} = (I^{R_1})^s$, it follows that I^s has R_1 as unique immediate base point.

We now compute $(I^s)^{R_1}$ in two ways. On the one hand, $(I^s)^{R_1} = (I^{R_1})^s = I_1^s$. On the other hand, $(I^s)^{R_1} = (A_v^s m^f)^{R_1} = (A_v^s)^{R_1} = (A_v^{R_1})^e = I_1^{ke}$. So it follows that

$$I_1^s = I_1^{ke}.$$

This implies that $s = ke$, so $I^s = I_1^{ke} = A_v^s m^f$. In combination with lemma 3.1 and with the fact that $A_v^{R_1} = I_1^k$, this implies that

$$ked(I, v) = ed(A_v, v) \leq ed(A_v^{R_1}, v) = ed(I_1, v) = ek.$$

So $d(I, v) = 1$ and $ke = ed(A_v, v) = ed(A_v^{R_1}, v)$. Consequently, $d(A_v, v) = k$ and $d(A_v, v) = d(A_v^{R_1}, v)$. □

The following result is contained in the proof of theorem 3.3. We formulate it separately since it gives a converse of lemma 3.1.

Corollary 3.4. Let (R, m) be a 2-dimensional rational singularity with algebraically closed residue field, and suppose that the associated graded ring $gr_m R$ is an integrally closed domain. Let (R_1, m_1) be an immediate quadratic transformation of (R, m) and let I_1 be a simple complete m_1-primary ideal of (R_1, m_1) with unique Rees valuation v. Let I be the inverse transform of I_1 in R. Then I is a complete m-primary ideal of R with $T(I) = \{v\}$ or $T(I) = \{v, \ord_R\}$, and $d(I, v) = 1$.

Note that in the special case where (R, m) is a 2-dimensional regular local ring, it follows that $T(I) = \{v\}$ in coll. 3.4, since one can use [16, proposition 3]
in that case (see the proof of prop. 3.4 in [6]). The following example illustrates the case \(T(I) = \{ v, \text{ord}_R \} \).

Example 3.5 Consider the following 2-dimensional rational singularity:

\[
R := \frac{k[X, Y, Z]|_{(X, Y, Z)}}{(X^2Y - Y^2 - Z^2 - XZ)|_{(X, Y, Z)}}
\]

with \(k \) an algebraically closed field. Let \(x, y, z \) denote the images of \(X, Y, Z \) in \(R \). Then \(R = k[x, y, z]|_{(x, y, z)} \) with \(x^2y = y^2 + z^2 + xz \) and \(m = (x, y, z) \) is the unique maximal ideal of \(R \). Consider

\[
R_1 := R[\frac{m}{x}]_N \quad N = (x, \frac{y}{x}, \frac{z}{x}).
\]

Let \(I \) be the following \(m \)-primary ideal in \(R \):

\[
I = (x^2, y, z).
\]

It follows from [5, lemma 1] that \(I \) is the inverse transform of the unique maximal ideal \(m_1 \) of \(R_1 \) and that \(T(I) = \{ v, \text{ord}_R \} \), where \(v \) is the \(\text{ord}_{R_1} \)-valuation. Also, \(R_1 \) is the unique immediate base point of \(I \).

According to coll. 3.4, we have \(d(I, v) = 1 \). In this particular example, we can verify this as follows. Note that \(d_m(I) = d_I(m) \), so

\[
d_m(\text{ord}_R)\text{ord}_R(I) = d(I, \text{ord}_R)\text{ord}_R(m) + d(I, v)\text{ord}(m).
\]

Since \(d(m, \text{ord}_R) = 2 \) and \(\text{ord}_R(I) = 1 \), and since \(d(I, \text{ord}_R) \) and \(d(I, v) \) are positive integers, it follows that

\[
d(I, v) = d(I, \text{ord}_R) = 1.
\]

4. Projectively full ideals

In this section we use the preceding results to give a class of projectively full ideals. The notion of projectively full ideals was introduced by Ciuperca, Heinzer, Ratliff Jr. and Rush in [1]. A regular ideal \(I \) in a Noetherian ring \(R \) is called projectively full if \(\overline{I} \) (\(n \in \mathbb{N}_0 \)) are the only integrally closed ideals that are projectively equivalent to \(I \). Two ideals \(I \) and \(J \) are called projectively equivalent if there exist positive integers \(m \) and \(n \) such that \(\overline{I} = \overline{I} \). For a regular ideal \(I \) of \(R \), let \(\mathbf{P}(I) \) denote the set of all integrally closed ideals that are projectively equivalent to \(I \). Then \(\mathbf{P}(I) \) is called projectively full if there exists a projectively full ideal \(J \) that is projectively equivalent to \(I \). Projectively equivalent ideals were introduced by Samuel in [13]. The theory of projectively equivalent ideals was further developed by McAdam, Ratliff Jr. and Sally in [10] and by Ciuperca, Heinzer, Ratliff Jr. and Rush in [1, 2]. Lipman proved that \(\mathbf{P}(I) \) is projectively full for each complete \(m \)-primary ideal \(I \) if \((R, m) \) is a 2-dimensional normal local domain that has a rational singularity. A proof
can be found in [3, section 6]. In [5, thm. 1] Debremaeker has shown that first neighborhood complete ideals in 2-dimensional Muhly local domains \((R, m)\) are projectively full, by giving an explicit description of these ideals. A first neighborhood complete ideal in \((R, m)\) is the inverse transform of the maximal ideal of an immediate quadratic transformation of \((R, m)\). For a 2-dimensional Muhly local domain that is a rational singularity, we can generalize this result to the inverse transform of any simple complete ideal. Moreover, we are able to give a very short and simple proof using coll. 3.4.

Theorem 4.1. Let \((R, m)\) be a 2-dimensional rational singularity with algebraically closed residue field, and suppose that the associated graded ring \(gr_mR\) is an integrally closed domain. Let \((R_1, m_1)\) be an immediate quadratic transformation of \((R, m)\) and let \(I_1\) be a simple complete \(m_1\)-primary ideal of \((R_1, m_1)\) with unique Rees valuation \(v\). Then the inverse transform \(I\) of \(I_1\) in \(R\) is projectively full.

Proof. From coll. 3.4 it follows that \(T(I) = \{v\}\) or \(T(I) = \{v, \text{ord}_R\}\). In case \(T(I) = \{v\}\), we have \(I = A_v\) and \(A_v\) is projectively full. So we can assume that \(T(I) = \{v, \text{ord}_R\}\). Let \(J\) be a complete \(m\)-primary ideal of \(R\) that is projectively equivalent to \(I\). Then there exist positive integers \(m\) and \(n\) such that

\[J^n = J^m = I^m. \]

This implies that \(T(J) = \{v, \text{ord}_R\}\) and

\[d(J^n, v) = nd(J, v) = md(I, v) = m. \]

So \(d(J, v) = \frac{m}{n}\) and \(\frac{m}{n}\) is a positive integer. Also,

\[d(J^n, \text{ord}_R) = d(I^m, \text{ord}_R) = md(I, \text{ord}_R). \]

Since \(d(J, v) = \frac{m}{n}d(I, v)\), \(d(J, \text{ord}_R) = \frac{m}{n}d(I, \text{ord}_R)\) and \(T(J) = T(I^\frac{m}{n})\), it follows from the theory of degree functions that \(J = I^\frac{m}{n}\). \(\square\)

Acknowledgement

The author would like to thank the referee for his or her helpful remarks.

References

