2.18 Independent Random Variables

Intro / Definition
Consequences of Independence
Covariance and Correlation
Anti-University of Georgia Example
Theorems Involving Covariance
Random Samples
Intro / Definition

Recall that two events are independent if \(\Pr(A \cap B) = \Pr(A) \Pr(B) \).

Then

\[
\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)} = \frac{\Pr(A) \Pr(B)}{\Pr(B)} = \Pr(A).
\]

And similarly, \(\Pr(B|A) = \Pr(B) \).

Now want to define independence for RV’s, i.e., the outcome of \(X \) doesn’t influence the outcome of \(Y \).
Definition: X and Y are independent RV’s if, for all x and y,

$$f(x, y) = f_X(x)f_Y(y).$$

Equivalent definitions:

$$F(x, y) = F_X(x)F_Y(y), \ \forall x, y$$

or

$$\Pr(X \leq x, Y \leq y) = \Pr(X \leq x)\Pr(Y \leq y), \ \forall x, y$$

If X and Y aren’t indep, then they’re dependent.
Theorem: If X and Y are indep, then $f(y|x) = f_Y(y)$.

Proof:

$$f(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{f_X(x)f_Y(y)}{f_X(x)} = f_Y(y).$$

Similarly, X and Y indep implies $f(x|y) = f_X(x)$.
Example (discrete): \(f(x, y) = \Pr(X = x, Y = y) \).

\[
\begin{array}{c|cc|c}
Y = 2 & X = 1 & X = 2 & f_Y(y) \\
0.12 & 0.28 & 0.4 \\
Y = 3 & 0.18 & 0.42 & 0.6 \\
f_X(x) & 0.3 & 0.7 & 1
\end{array}
\]

\(X \) and \(Y \) are indep since \(f(x, y) = f_X(x)f_Y(y), \forall x, y. \)
Example (cts): Suppose $f(x, y) = 6xy^2$, $0 \leq x \leq 1$, $0 \leq y \leq 1$.

After some work (which can be avoided by the next theorem), we can derive

$$f_X(x) = 2x, \text{ if } 0 \leq x \leq 1, \text{ and}$$

$$f_Y(y) = 3y^2, \text{ if } 0 \leq y \leq 1.$$

X and Y are indep since $f(x, y) = f_X(x)f_Y(y)$, $\forall x, y$.
Easy way to tell if X and Y are indep...

Theorem: X and Y are indep iff $f(x, y) = a(x)b(y)$, $\forall x, y$, for some functions $a(x)$ and $b(y)$ (not necessarily pdf’s).

So if $f(x, y)$ factors into separate functions of x and y, then X and Y are indep.
Example: \(f(x, y) = 6xy^2, \, 0 \leq x \leq 1, \, 0 \leq y \leq 1. \) Take
\[a(x) = 6x, \, 0 \leq x \leq 1, \text{ and } b(y) = y^2, \, 0 \leq y \leq 1. \]
Thus, \(X \) and \(Y \) are indep (as above).

Example: \(f(x, y) = \frac{21}{4}x^2y, \, x^2 \leq y \leq 1. \) “Funny” (non-rectangular) limits make factoring into marginals impossible. Thus, \(X \) and \(Y \) are not indep.
Example: \(f(x, y) = \frac{c}{x+y}, \ 1 \leq x \leq 2, \ 1 \leq y \leq 3. \)

Can’t factor \(f(x, y) \) into fn’s of \(x \) and \(y \) separately. Thus, \(X \) and \(Y \) are not indep.

Now that we can figure out if \(X \) and \(Y \) are indep, what can we do with that knowledge?
2.18 Independent RV's

Consequences of Independence

Definition/Theorem (another Unconscious Statistician): Let \(h(X, Y) \) be a fn of the RV's \(X \) and \(Y \). Then

\[
\mathbb{E}[h(X, Y)] = \begin{cases}
\sum_x \sum_y h(x, y) f(x, y) & \text{discrete} \\
\int_{\mathbb{R}} \int_{\mathbb{R}} h(x, y) f(x, y) \, dx \, dy & \text{continuous}
\end{cases}
\]

Theorem: Whether or not \(X \) and \(Y \) are indep,

\[
\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].
\]
Proof (cts case):

\[E[X + Y] = \int_{\mathbb{R}} \int_{\mathbb{R}} (x + y) f(x, y) \, dx \, dy \]

\[= \int_{\mathbb{R}} \int_{\mathbb{R}} x f(x, y) \, dx \, dy + \int_{\mathbb{R}} \int_{\mathbb{R}} y f(x, y) \, dx \, dy \]

\[= \int_{\mathbb{R}} x \int_{\mathbb{R}} f(x, y) \, dy \, dx + \int_{\mathbb{R}} y \int_{\mathbb{R}} f(x, y) \, dx \, dy \]

\[= \int_{\mathbb{R}} x f_X(x) \, dx + \int_{\mathbb{R}} y f_Y(y) \, dy \]

\[= E[X] + E[Y]. \]
2.18 Independent RV's

Can generalize this result to more than two RV's.

Theorem: If X_1, X_2, \ldots, X_n are RV's, then

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i].$$

Proof: Induction.
Theorem: If X and Y are *indep*, then $E[XY] = E[X]E[Y]$.

Proof (cts case):

\[
E[XY] = \int_{\mathbb{R}} \int_{\mathbb{R}} xyf(x, y) \, dx \, dy
\]

\[
= \int_{\mathbb{R}} \int_{\mathbb{R}} xyf_X(x)f_Y(y) \, dx \, dy \quad (X \text{ and } Y \text{ are indep})
\]

\[
= \left(\int_{\mathbb{R}} xf_X(x) \, dx \right) \left(\int_{\mathbb{R}} yf_Y(y) \, dy \right)
\]

\[
= E[X]E[Y].
\]
Remark: The above theorem is *not* necessarily true if X and Y are *dependent*. See the upcoming discussion on covariance.

Theorem: If X and Y are *indep*, then

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y).$$

Remark: The assumption of independence really is important here.
2.18 Independent RV's

Proof:

\[
\begin{align*}
\text{Var}(X + Y) &= \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 \\
&= \mathbb{E}[X^2 + 2XY + Y^2] - (\mathbb{E}[X] + \mathbb{E}[Y])^2 \\
&= \mathbb{E}[X^2] + 2\mathbb{E}[XY] + \mathbb{E}[Y^2] \\
&\quad - (\mathbb{E}[X])^2 - 2\mathbb{E}[X]\mathbb{E}[Y] - (\mathbb{E}[Y])^2 \\
&= \mathbb{E}[X^2] + 2\mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[Y^2] \\
&\quad - (\mathbb{E}[X])^2 - 2\mathbb{E}[X]\mathbb{E}[Y] - (\mathbb{E}[Y])^2 \\
&= \mathbb{E}[X^2] - (\mathbb{E}[X])^2 + \mathbb{E}[Y^2] - (\mathbb{E}[Y])^2 \\
&= \text{Var}(X) + \text{Var}(Y).
\end{align*}
\]
Covariance and Correlation

These are measures used to define the degree of association between X and Y if they don’t happen to be indep.

Definition: The covariance between X and Y is

$$\text{Cov}(X, Y) \equiv \sigma_{XY} \equiv \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

Remark: $\text{Cov}(X, X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \text{Var}(X)$.
If X and Y have positive covariance, then X and Y move “in the same direction.” Think height and weight.

If X and Y have negative covariance, then X and Y move “in opposite directions.” Think snowfall and temperature.
Theorem (easier way to calculate Cov):

\[\text{Cov}(X, Y) = E[XY] - E[X]E[Y]. \]

Proof:

\[
\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]
\]

\[
\]

\[
\]

\[
= E[XY] - E[X]E[Y].
\]
Theorem: X and Y indep implies $\text{Cov}(X, Y) = 0$.

Proof:

\[\text{Cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \]

\[= \mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[X]\mathbb{E}[Y] \quad (X, Y \text{ indep}) \]

\[= 0. \]
Danger Will Robinson: Cov(X, Y) = 0 does not imply X and Y are indep!!

Example: Suppose X ∼ U(−1, 1) and Y = X^2 (so X and Y are clearly dependent).

But

\[E[X] = \int_{-1}^{1} x \cdot \frac{1}{2} dx = 0 \] and

\[E[XY] = E[X^3] = \int_{-1}^{1} x^3 \cdot \frac{1}{2} dx = 0, \]

so Cov(X, Y) = E[XY] − E[X]E[Y] = 0.
Definition: The **correlation** between X and Y is

$$
\rho = \text{Corr}(X, Y) \equiv \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = \frac{\sigma_{XY}}{\sigma_X\sigma_Y}.
$$

Remark: Cov has “square” units; corr is unitless.

Corollary: X, Y indep implies $\rho = 0$.
Theorem: It can be shown that $-1 \leq \rho \leq 1$.

$\rho \approx 1$ is “high” corr

$\rho \approx 0$ is “low” corr

$\rho \approx -1$ is “high” negative corr.

Example: Height is highly correlated with weight.
Temperature on Mars has low corr with IBM stock price.
2.18 Independent RV's

Anti-UGA Example: Suppose X is the avg yards/carry that a UGA fullback gains, and Y is his grade on an astrophysics test. Here's the joint pmf $f(x, y)$.

<table>
<thead>
<tr>
<th></th>
<th>$X = 2$</th>
<th>$X = 3$</th>
<th>$X = 4$</th>
<th>$f_Y(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = 40$</td>
<td>.0</td>
<td>.2</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>$Y = 50$</td>
<td>.15</td>
<td>.1</td>
<td>.05</td>
<td>.3</td>
</tr>
<tr>
<td>$Y = 60$</td>
<td>.3</td>
<td>.0</td>
<td>.1</td>
<td>.4</td>
</tr>
</tbody>
</table>

$f_X(x)$ | .45 | .3 | .25 | 1
2.18 Independent RV's

\[E[X] = \sum_x x f_X(x) = 2.8 \]
\[E[X^2] = \sum_x x^2 f_X(x) = 8.5 \]
\[\text{Var}(X) = E[X^2] - (E[X])^2 = 0.66 \]

Similarly, \(E[Y] = 51 \), \(E[Y^2] = 2670 \), and \(\text{Var}(Y) = 60 \).

\[E[XY] = \sum_x \sum_y xy f(x, y) \]
\[= 2(40)(.0) + \cdots + 4(60)(.1) = 140 \]
\[\text{Cov}(X, Y) = E[XY] - E[X]E[Y] = -2.8 \]
\[\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = -0.415. \]
Cts Example: Suppose $f(x, y) = 10x^2y$, $0 \leq y \leq x \leq 1$.

$$f_X(x) = \int_0^x 10x^2y \, dy = 5x^4, \quad 0 \leq x \leq 1$$

$$E[X] = \int_0^1 5x^5 \, dx = 5/6$$

$$E[X^2] = \int_0^1 5x^6 \, dx = 5/7$$

$$\text{Var}(X) = E[X^2] - (E[X])^2 = 0.01984$$
Similarly,

\[f_Y(y) = \int_y^1 10x^2 y \, dx = \frac{10}{3} y(1 - y^3), \quad 0 \leq y \leq 1 \]

\[E[Y] = \frac{5}{9}, \quad \text{Var}(Y) = 0.04850 \]

\[E[XY] = \int_0^1 \int_0^x 10x^3 y^2 \, dy \, dx = \frac{10}{21} \]

\[\text{Cov}(X, Y) = E[XY] - E[X]E[Y] = 0.1323 \]

\[\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = 0.4265 \]
Theorems Involving Covariance

Theorem: \(\text{Var}(X+Y) = \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y) \), whether or not \(X \) and \(Y \) are indep.

Remark: If \(X, Y \) are indep, the Cov term goes away.

Proof: By the work we did on a previous proof,

\[
\text{Var}(X + Y) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 + \mathbb{E}[Y^2] - (\mathbb{E}[Y])^2 + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])
\]

\[
= \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y).
\]
2.18 Independent RV’s

Theorem:

\[
\text{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \text{Var}(X_i) + 2\sum\sum_{i<j} \text{Cov}(X_i, X_j).
\]

Proof: Induction.

Remark: If all \(X_i\)’s are \textit{indep}, then

\[
\text{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \text{Var}(X_i).
\]
Theorem: $\text{Cov}(aX, bY) = ab\text{Cov}(X, Y)$.

Proof:

\[
\text{Cov}(aX, bY) = E[aX \cdot bY] - E[aX]E[bY]
\]

\[
= abE[XY] - abE[X]E[Y]
\]

\[
= ab\text{Cov}(X, Y).
\]
2.18 Independent RV's

Theorem:

\[\text{Var}(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 \text{Var}(X_i) + 2 \sum \sum_{i<j} a_i a_j \text{Cov}(X_i, X_j). \]

Proof: Put above two results together.
Example: \(\text{Var}(X - Y) = \text{Var}(X) + \text{Var}(Y) - 2 \text{Cov}(X, Y) \).

Example:

\[
\text{Var}(X - 2Y + 3Z) = \text{Var}(X) + 4 \text{Var}(Y) + 9 \text{Var}(Z) - 4 \text{Cov}(X, Y) + 6 \text{Cov}(X, Z) - 12 \text{Cov}(Y, Z).
\]
Random Samples

Definition: X_1, X_2, \ldots, X_n form a random sample if

- X_i’s are all independent.
- Each X_i has the same pmf/pdf $f(x)$.

Notation: $X_1, \ldots, X_n \overset{iid}{\sim} f(x)$ ("indep and identically distributed")
Example/Theorem: Suppose $X_1, \ldots, X_n \sim f(x)$ with $E[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2$. Define the **sample mean** as

$$ \bar{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_i. $$

Then

$$ E[\bar{X}] = E\left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu. $$

So the mean of \bar{X} is the same as the mean of X_i.
Meanwhile, \ldots

\[\text{Var}(\bar{X}) = \text{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_i\right) \]

\[= \frac{1}{n^2} \text{Var}\left(\sum_{i=1}^{n} X_i\right) \]

\[= \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i) \quad (X_i \text{'s indep}) \]

\[= \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{\sigma^2}{n}. \]

So the mean of \(\bar{X} \) is the same as the mean of \(X_i \), but the variance decreases!